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Abstract  15 

The neural mechanisms underlying the emergence of functional connectivity in resting-16 

state fMRI remain poorly understood. Recent studies suggest that resting-state activity consists of 17 

brief periods of strong co-fluctuations among brain regions, which reflect overall functional 18 

connectivity. Others report a continuum in co-fluctuations over time, with varying degree of 19 

correlation to functional connectivity. These findings raise the critical question: what neural 20 

processes underlie the temporal structure of resting-state activity? To address this, we used a 21 

biophysically realistic whole-brain computational model in which resting-state activity emerged 22 

from temporal variations in the ion concentrations of potassium (K+) and sodium (Na+), 23 

intracellular chloride (Cl-), and the activity of the Na+/K+ ATPase. The model reproduced transient 24 

periods of high co-fluctuations, and the functional connectivity at different co-fluctuation levels 25 

correlated to varying degrees with the connectivity measured over the entire simulation, in line 26 

with experimental observations. The periods of high co-fluctuations were aligned with large 27 

changes in extracellular ion concentrations. Furthermore, critical parameters governing ion 28 

dynamics strongly affected both the timing of these transient events and the spatial structure of the 29 

resulting functional connectivity. The balance of excitatory and inhibitory activity further 30 

modulated their frequency and amplitude. Together, these results suggest that intrinsic fluctuations 31 

in ion dynamics could serve as a plausible neural mechanism for the temporal organization of co-32 

fluctuations and resting-state functional connectivity. 33 
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Introduction 35 

Resting-state fMRI activity is widely used to assess brain function in both healthy and 36 

disease conditions (1, 2). In particular, the functional connectivity (FC) derived from blood oxygen 37 

level-dependent (BOLD) activity between different brain regions has been used to identify the 38 

neural basis of cognitive processes (3, 4) and alterations in diseases (5). Coherent fluctuations 39 

across distinct brain areas, typically quantified by Pearson correlation, give rise to functional 40 

connectivity, which reflects the interactions between distributed brain regions at rest (6, 7).  41 

Across many studies, a single FC measure is computed for the entire scanning session. 42 

However, this approach ignores the temporal variations in FC, even though electrophysiological 43 

recordings have shown that neural activity is dynamic and undergoes large fluctuations over time 44 

(8-12). More recent work has focused on the temporal variations in FC and has indeed found that 45 

FC varies across time (13). Sliding window analysis (14) has revealed transient “spontaneous 46 

events” involving multiple subnetworks (15). More recently, single frame-based methods have 47 

been applied to examine moment-to-moment variations in resting-state FC (16). In these works, 48 

an “edge-centric” analysis, where pairwise regional co-fluctuations (edges) are measured at single 49 

time frame resolution, was used (17-19). This approach further demonstrated that FC varies over 50 

time, with ongoing resting-state activity punctuated by brief periods of widespread highly 51 

correlated activity (16).  52 

Several studies examining FC now suggest that FC varies over time, however, many 53 

properties of time-resolved FC remain a contested topic (13). One issue concerns the contribution 54 

of brief events to the overall FC. Studies using the single frame analyses have found that brief 55 

periods of high co-fluctuation are strongly correlated with the overall FC measured across the 56 

entire recording period (19). In contrast, other studies have reported a monotonic relationship 57 

between the strength of co-fluctuation and the overall FC (20, 21). Further, statistical models have 58 

suggested that static FC alone could drive such brief high co-fluctuation events (22). Collectively, 59 

these findings have led to an ongoing debate whether co-fluctuations represent genuine neural 60 

events (23-26) or arise from experimental factors (e.g. head motion) or statistical artifacts (e.g. 61 

variability in sampling from static FC) (20-22, 27). 62 

 A complementary approach to studying the dynamics of FC is to use bottom-up methods 63 

based on the modeling of spontaneous neural activity, and infer the derived statistical measures 64 

from the simulated data. This approach assumes that neural signals drive BOLD activity, with 65 

artifacts such as head motion or noise added on top. The level of detail captured by these methods 66 

ranges from coarse-grained field or mass models that describe regional activity to single neuron 67 

level models using spiking networks (28-30), with each scale contributing distinct mechanisms 68 

(31). 69 

 70 
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This new work focuses on a detailed biophysical model that generates infra-slow resting-72 

state activity due to ion dynamics (32). Our research was motivated by the following two questions: 73 

(a) Does the detailed model reproduce the fast time-scale co-fluctuation dynamics observed in 74 

experiments? (33) and (b) What neural mechanisms determine the temporal variations in co-75 

fluctuation and fMRI activity. 76 

Using a large-scale computational network model based on the human connectome, we 77 

show that co-fluctuations in resting-state fMRI activity, consistent with observations from 78 

experiments, are linked to fluctuations in extracellular K+ concentrations ([K+]o). To establish 79 

causality, we demonstrate that altering [K+]o ion dynamics or the Na+ /K+ pump alters the spatial 80 

extent and distribution of co-fluctuations. Furthermore, we show that the balance of excitatory and 81 

inhibitory network connectivity modulates the co-fluctuations. Overall, our computational model 82 

offers a testable hypothesis for the neural mechanism underlying co-fluctuation events, providing 83 

a framework for future experimental validation. 84 

Results: 85 

In this study, we used a biophysically realistic cortical network model based on our 86 

previous work (34) to investigate the neural mechanisms underlying resting-state infra-slow 87 

fluctuations. The model (see Methods for details) consisted of detailed two-compartment 88 

excitatory pyramidal (PY) neurons and inhibitory interneurons (IN) with Hodgkin-Huxley 89 

kinetics. Neurons were synaptically connected through AMPA, NMDA, and GABA-A synapses. 90 

Each neuron received a random Poisson drive to capture stochastic afferent input. The model 91 

incorporated dynamically varying ion concentrations for the major ion species, including K+, Na+, 92 

Cl-, and Ca2+, to mimic in vivo-like ionic dynamics.  93 

Figure 1A illustrates the modeled ion concentrations, membrane ion channels, ion 94 

exchangers/pumps, and extracellular astrocytic K+ buffering. A “cluster” or “node” of neurons was 95 

used to model an individual brain region, and consisted of a population of 50 excitatory (PY) and 96 

10 inhibitory (IN) neurons. Neurons within a cluster were connected through synapses and coupled 97 

by ion diffusion within the shared extracellular space. An example schematic of a single cluster is 98 

shown in Figure 1B. Multiple clusters were modeled and connected via long-range feedforward 99 

excitatory synaptic connections (E-to-E and E-to-I) (Figure 1C) to form a network of connected 100 

brain regions. The long-range network connectivity was based on either CoCoMac brain data (35) 101 

for macaque brain simulations or DW-MRI structural connectivity matrices (36) for human brain 102 

simulations. Adjacency matrices for human and macaque simulations are shown in Figure 1D and 103 

1E where color indicates the relative strength of the feedforward excitatory connections.  104 
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 106 

Figure 1 - Basic model schematic from single compartment to global connectivity. A, Schematic 107 

of single dendritic compartment including a list of intrinsic ionic currents included in the 108 

compartment (left), ionic species modeled with dynamics concentrations, KCC2 cotransporter and 109 
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Na+/K+ pump, and astrocytic buffer of [K+]o. B, Schematic of a single cluster of excitatory and 110 

inhibitory neurons used to model individual brain regions in the whole network. Black/red circles 111 

represent excitatory/inhibitory neurons. Excitatory synapses are mediated by AMPA/NMDA 112 

receptors while inhibitory synapses are mediated by GABA-A. C, Schematic representation of how 113 

individual clusters for the whole network model. Clusters are connected via feedforward 114 

excitation. D, Adjacency matrices for Macaque (left) and Human (right) network simulations. 115 

Color indicates the relative strength of the feedforward connections between clusters. 116 

In a network comprising of 58 brain regions of the macaque brain interconnected via 117 

feedforward excitation, the average network firing rate exhibited spontaneous infra-slow 118 

fluctuations (Figure 2A). As previously reported (32), these fluctuations were also present in the 119 

network-wide mean [K+]o concentration, intracellular sodium concentration ([Na+]i), and Na+/K+ 120 

pump current (Figure 2A). Figure 2B shows the corresponding power spectra for each of these 121 

signals, displaying a prominent ~0.025 Hz peak, characteristic of resting-state infra-slow 122 

fluctuations commonly observed in brain networks (37, 38). Similar dynamics were observed in a 123 

network consisting of 45 brain regions of the human brain simulated using DW-MRI derived 124 

connectivity (Figure 2D/E). 125 

The temporal evolution of resting-state activity in the model aligns with experimental 126 

observations 127 

To examine temporal variations in functional connectivity during resting periods, we employed a 128 

moment-to-moment estimation method previously used in experimental works (20, 39). In this 129 

approach, moment-to-moment co-fluctuations are quantified using edge-based time series (ETS), 130 

computed for each edge (pair of regions) as the product of z-scored time series from the two 131 

regions. Since the Na+/K+ pump is responsible for the majority of the oxygen consumption in the 132 

brain, we used Na+/K+ pump current as a proxy for the BOLD signal for each region to compute 133 

the ETS in this work. Intuitively, ETS captures the relative synchronization between regions rather 134 

than differences in absolute signal intensity. Figure 2C,F shows the resulting ETS (top) and the 135 

corresponding root-sum squared (RSS) signal of the ETS (bottom) for both macaque and human 136 

simulations. Consistent with (19), we found brief periods of high amplitude co-fluctuations, as 137 

demonstrated by peaks in the RSS signal (Figure 2C,F, bottom). Additionally, the distribution of 138 

RSS values resembled the skewed distribution for RSS signals reported for human fMRI BOLD 139 

recordings (Figure 2C,F, bottom). 140 
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Figure 2 - Model with dynamic ion concentrations captures peaks in moment-to-moment co-142 

fluctuations. A/D, Network average [K+]o, [Na+]i, Na+/K+ pump, and firing rate showing 143 

characteristic infra-slow fluctuations in both Macaque (A) and Human (D) simulations. B/E, 144 

power spectra for the time series in A/D showing peaks around the infra-slow frequencies (0.01-145 

0.05Hz). C/F, Top heatmap shows the computed Edge-based Time Series (EST) for both Macaque 146 

and Human network simulations. Bottom, the corresponding Root-Sum Squared (RSS) computed 147 

from the EST reveals brief periods of high co-fluctuations throughout the networks. Left, inset 148 

shows the distribution of RSS values showing a right skewed distribution. 149 

Experimental studies have shown that periods of high amplitude co-fluctuations exhibit 150 

strong correlations with time-averaged rsFC (17-19). In other words, short bursts of high co-151 

fluctuation between regions – moments when many areas are synchronously active – reproduce 152 

much of the structure of the full rsFC. Thus, the brain’s overall connectivity pattern appears to be 153 

driven by brief, high-amplitude co-fluctuation events. To test whether our model captured this 154 

phenomenon, we computed the time-average rsFC of macaque and human simulations, and 155 

compared them to the rsFC estimated only from the top 5% of time points in the RSS signal (95th 156 

percentile). In other words, the time-averaged rsFC was computed using the entire time series, 157 

whereas the “ETS-based” FC was derived from the segments of the time series showing the highest 158 

synchrony across regions (top 5% of the RSS signal). Figure 3A/B shows the macaque/human 159 

time-averaged rsFC (left) and the mean ETS-based FC from the top 5% RSS time points (middle). 160 

The time-averaged rsFC and the ETS-based FC from only the top 5% RSS periods had high 161 

similarity, as previously reported in humans. We found that the strongest correlations between 162 

time-averaged rsFC and ETS-based FC occurred at the highest RSS amplitude time points (Figure 163 

3A/B, right). 164 

Next, we asked whether the inter-event interval of high amplitude co-fluctuations reflects 165 

the infra-slow timescale of the resting-state fluctuations (Figure 3C). We found that the inter-event 166 

intervals between high amplitude co-fluctuations (>=top 5%) displayed timescales similar to 167 

endogenous resting-state fluctuations (Figure 3C, middle/right). The distribution of the inter-event 168 

intervals had a long tail extending up to 400s. This suggests that the generation of high-value RSS 169 

events is irregular and may involve spontaneous accumulation of intrinsic and ionic changes driven 170 

by stochastic network activity. We further investigate these cellular and ionic mechanisms in 171 

subsequent experiments.   172 
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 173 

Figure 3 - Highest amplitude peaks in RSS correlate strongly with time-averaged rsFC. A/B, 174 

Left shows the time-averaged resting-state functional connectivity (rsFC) computed across entire 175 

simulated time for Macaque (A) and Human (B) networks. Middle panels show the average ETS-176 

based FC at peaks in RSS time series detected using a 95-percentile threshold. Right panels show 177 

the correlation between the rsFC (left panel) and the ETS-based FC (middle panel) as a function 178 

of percentile thresholds used to detect RSS peaks. Arrow indicates the 95-percentile threshold 179 

condition. C, Left panel shows the RSS time series with detected peaks using a 95-percentile 180 

threshold (green stars). Middle panel shows the distribution of inter-event intervals of detected 181 

RSS peaks. Right panel shows the interevent interval as a function of percentile threshold used to 182 

detect RSS peaks. Arrow indicates the 95-percentile condition. 183 
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Co-fluctuations of resting-state in the model require dynamically varying [K+]o 185 

As the results in Figure 3 suggest, in a model with dynamic ion concentrations, moment-186 

to-moment activity co-fluctuations occur spontaneously and contribute to the generation of the 187 

time-averaged rsFC, leading us to investigate the role of neuronally-generated infra-slow activity 188 

by blocking ion dynamics. Based on our previous work, where we identified [K+]o dynamics as a 189 

critical component (40), here we primarily investigated the impact of varying [K+]o dynamics. We 190 

simulated a human network (for an extended period of 2.5 hours of simulated fMRI signal) in 4 191 

different conditions – normal, fixed [K+]o, removed global connectivity (G) (to disentangle 192 

contribution of connectivity), and finally both fixed [K+]o and removed G. The effect is visible in 193 

Figure 4A/B, where fixing [K+]o decreased variability in both firing rate and Na+/K+ pump current 194 

(Figure 4A/B, second panel), but not their relative levels (due to relative network hubness of each 195 

node). Blocking G kept variability but removed the relative levels, and put every brain area on the 196 

same basic level (Figure 4A/B, second panel). Blocking both combined the effect (fourth panel of 197 

Figure 4A/B). 198 

From an fMRI perspective (Figure 4C), blocking G disrupts FC structure (which is partly 199 

driven by structural long-range connectivity), while fixing [K+]o keeps shallow contours 200 

(connectivity for fast interactions is still there, but the major oxygen consumer – Na+/K+ pump – 201 

and driver for slow BOLD signal is severely affected). From the perspective of the RSS 202 

measurements (Figure 4D/E), we see changes in the RSS distributions, and a separation of co-203 

fluctuation inter-event intervals between normal and test scenarios, with fixed [K+]o resulting in a 204 

more pronounced effect. This suggests that the potassium mechanism, being the main driver for 205 

the infra-slow activity in the biophysical model (32), impacts co-fluctuation event statistics and 206 

influences their occurrence.  207 

Co-fluctuations are coupled with ion fluctuations 208 

To further understand the temporal relationship between co-fluctuations and ion 209 

concentrations/neural activity, we examined periods around co-fluctuation peaks using peak-210 

triggered averaging (Figure S1). We identified two different neural activity patterns that occur 211 

during the co-fluctuation events. In the first case (Figure S1B, left), the RSS peak was associated 212 

with a significant reduction in firing rate and [K+]o. The Na+/K+ pump current had low values 213 

during these peaks. In the second case (Figure S1B, right), the RSS peak was associated with 214 

increased firing rate and [K+]o. In both cases, there was a small oscillatory nature to the RSS and 215 

ion dynamics, as the peak corresponding to the reduction of firing rate was followed or preceded 216 

by a peak with increase in firing rate (similarly for the peak with increased firing rate). This was 217 

further verified when we examined the distribution of simulated BOLD, firing rate and [K+]o for 218 

different RSS values. High RSS values had distributions (Figure S1C) which are significantly 219 

higher or lower compared to lower RSS values in all 3 variables. The overall average (Figure S1D) 220 

captured only the increase in the firing rate and BOLD, suggesting the number of instances with 221 

an increase in firing rate and BOLD was higher than the reduction.  222 
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 223 

Figure 4 – Effect of potassium dynamics on the Inter-event intervals. In all panels 4 conditions 224 

are considered: Control: baseline human connectome model. Koff: model with removed potassium 225 

dynamics. Goff: Model when long-range connections are removed. KGoff: Goff and Koff combined. 226 

Top. Underlying physiological activity: A, average firing rate of each region (moving average, 227 

window 30 [s]). B, average Na+/K+ pump activity of each region (moving average, window 30 228 

[s]). C, Corresponding functional connectivity for 4 respective conditions. Bottom. RSS-based 229 

measures: D, Histogram of raw RSS values for each condition. E, Inter-Event interval length 230 

histogram for two major conditions - Control and Koff (shaded lines indicate standard deviation, 231 

14 trials). Inset shows all 4 conditions for comparison. 232 
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 234 

Figure. 5 – Decreasing Na+/K+ pump increases recruitment of nodes in tail RSS events. A, Mean 235 

[K+]o of networks with varying amounts of Na+/K+ pump strengths. Percentages listed to the left 236 

indicate the percent strength of Na+/K+ pump with 100% being the default/baseline network 237 

condition. B, ETS computed for 3 network conditions 90% (left), 100% (middle), and 110% (right) 238 

Na+/K+ pump strengths. Corresponding RSS time series below each ETS. Red dashed line 239 

demarcates the threshold use to detect peaks and stars indicate detect peaks. C, Left, Distributions 240 

of RSS values in B. Middle, Average number of active nodes per detected RSS peak as a function 241 

of Na+/K+ pump strength. A node is considered active if their firing rate increases past its average 242 

firing rate during that RSS peak. Right, Correlation between time-averaged rsFC and ETS-based 243 

FC as a function of Na+/K+ pump strength. 95-percentile was used as a threshold for RSS peak 244 

detection.  245 
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Accumulation of ionic concentration is required for spontaneous fluctuations   247 

The fluctuations of ion dynamics are both dependent on and influence the neural activity. 248 

It undergoes a period of accumulation where it increases and periods of reduction when the 249 

accumulated ions are removed through active processes such as Na+/K+ pump activity. Thus, to 250 

investigate further how local ionic fluctuations regulate global dynamics, we altered the strength 251 

of the Na+/K+ pump current locally in each brain region in a model with simulated human 252 

connectivity. Reducing the Na+/K+ pump current will result in lower clearance of the extracellular 253 

ions including [K+]o ions, while increasing Na+/K+ pump strength will lead to higher clearance and 254 

lower amplitude in ion fluctuations.  255 

Figure 5A shows the average [K+]o across all brain regions resulting from different amounts 256 

of Na+/K+ current strength. Reduction of Na+/K+ pump strength (e.g. 90% pump strength) resulted 257 

in large amplitude [K+]o fluctuations (Figure 5A). This was due to a slowdown in the ability of the 258 

pump to respond to the gradual accumulation of extracellular K+ resulting in [K+]o reaching higher 259 

levels, and thereby increasing the duration of the gradual discharge of accumulated [K+]o. 260 

Alternatively, increasing pump strength (e.g. 120% pump strength) resulted in a much more 261 

efficient clearance of [K+]o and smaller [K+]o fluctuations (Figure 5A). As changes to the rise and 262 

decay dynamics of [K+]o could impact properties of co-fluctuations in network activity, we 263 

examined the effect of Na+/K+ pump strength on ETS and RSS distributions. ETS computed for 264 

low pump strengths (e.g. 90%) showed more pronounced periods of co-fluctuations in network 265 

activity (Figure 5B, left). The corresponding RSS time series showed wider RSS peaks than 266 

networks with stronger Na+/K+ pump strengths (e.g. 100% or 110%, Figure 5B middle/right). 267 

Similarly, we observed wider RSS distributions for networks with lower pump strengths (Figure 268 

5C, left). We next asked how changes to Na+/K+ pump strengths could drive the observed 269 

differences in RSS and co-fluctuations in network activity. We found that RSS peaks in lower 270 

pump strength conditions were characterized by a larger number of recruited nodes (Figure 5D, 271 

middle). As the Na+/K+ pump strength increased, the number of recruited nodes at the peaks in 272 

RSS reduced. Similarly, networks with lower pump strengths displayed stronger correlations 273 

between ETS-based FC and time-averaged rsFC (Figure 5D, right). As the Na+/K+ pump regulates 274 

[K+]o, lower pump strengths (e.g. 90% condition) allow for larger/slower [K+]o fluctuations 275 

whereas higher pump strengths (e.g. 120%) lead to a tighter regulation of [K+]o and smaller/faster 276 

fluctuations. Larger/slow [K+]o fluctuations increase the window of opportunity for nodes in the 277 

network to synchronize or become active, thereby contributing to the RSS peaks. Alternatively, 278 

increasing the pump strength means that when [K+]o begins to increase it is very quickly discharged 279 

and so the [K+]o increase is short lived. This quick discharge reduces the window of opportunity 280 

for node recruitment and formation of RSS peaks. 281 
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Figure. 6 – Feedforward excitation drives more nodes recruitment (and vice versa for 283 

inhibition).  A/B, Left panel show the average number of active nodes per RSS peak as a function 284 

of the strength of long-range feedforward excitatory (A)/inhibitory (B) synapses between nodes. 285 

Right panel shows the average amplitude of the detected RSS peaks as a function of long-range 286 

feedforward excitatory (A)/inhibitory (B) synapses. C, Left heatmap shows the effect of changes in 287 

strength of local excitatory (y-axis) and local inhibitory (x-axis) synaptic strength on the average 288 

number of active nodes per RSS peak. Middle heatmap shows the resulting number of tail events 289 

identified from RSS distributions when varying local E-I balance. Right heatmap shows the mean 290 

functional connectivity computed across the entire network for different E-I balance conditions.  291 

E-I balance determines the spatial recruitment during the events  292 

In the previous section we explored how regulation of local ion concentration dynamics 293 

influences node recruitment and moment-to-moment co-fluctuations in activity underlying FC. We 294 

next asked how synaptic connectivity, either long-range or local, influenced these co-fluctuations 295 

and node recruitment. First, we explored the role of long-range connectivity in node recruitment. 296 

We varied the strength of excitatory feedforward connections between nodes in a network defined 297 

by human structural connectivity (Figure 1E). We found that increasing all feedforward long-range 298 

excitatory connections results in an increase in node recruitment at RSS peaks (Figure 6A, left). 299 

This increase in node recruitment was accompanied by increases in the amplitudes of RSS peaks 300 

(Figure 6A, right). Alternatively, we observed a negative correlation between long-range 301 

feedforward inhibition and node recruitment (Figure 6B, left). Increasing feedforward inhibition 302 

resulted in a slight decrease in the amplitude of RSS peaks (Figure 6B, right). These results suggest 303 

that long-range connectivity can influence co-fluctuations in activity by modulating recruitment 304 

of nodes and synchronization of the network as a whole. Next, we explored the role of local 305 

excitatory/inhibitory (E-I) balance on co-fluctuations. For these experiments, we kept feedforward 306 

connection strengths constant (i.e. 100% scaling) and only varied the excitatory/inhibitory 307 

synapses within each node. By doing this sweep in local E-I balance, we found that node 308 

recruitment at RSS peaks was highest in conditions described by low inhibition (Figure 6C, left). 309 

Interestingly, not all conditions where node recruitment was highest correlated with increases in 310 

the number of RSS tail events or peaks (Figure 6C, middle). We found that the highest number of 311 

tail events or RSS peaks occurred in conditions of high excitation and low inhibition (Figure 6C, 312 

middle). Similarly, the highest correlated activity across the network was seen in these same low 313 

inhibition / high excitation conditions (Figure 6C, right). These findings suggest that local E-I 314 

balance is crucial for correlated activity across the whole network and impacts moment-to-moment 315 

co-fluctuations underlying FC. Together, these results demonstrate the role of both local and long-316 

range synaptic strengths on the properties of co-fluctuations in activity driving rsFC. 317 

 318 

Discussion 319 

BOLD activity in the brain shows spontaneous infra-slow fluctuations (41). While there is 320 
ongoing discussion about the relative contribution of different physiological factors to the BOLD 321 
signal (7), there is ample evidence supporting a neural origin of infra-slow fluctuations (8-12, 42), 322 
and the derived static and time-varying functional connectivity (see (13) for a review). FC is 323 
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typically measured using linear Pearson correlation coefficient, as the nonlinear contributions to 324 
coupling are practically negligible (43, 44). Notably, the FC is traditionally computed from the full 325 

time series, based on the assumption of stationarity and the need for sufficiently long recordings 326 
to obtain a reliable estimate of FC (45). Of course, alternative approaches have also been proposed, 327 
often centered on the idea of switching brain states characterized by distinct FC (13, 14, 46), 328 
although the inference of such states may be methodologically problematic (27, 47-49). In an 329 
extreme case, one could view brain dynamics as a progression of states defined by an instantaneous 330 

vector of brain activation across voxels, or regions, with the observed FC representing the time-331 
averaged result of the observation of the covariance. From this perspective, stationary FC can be 332 
well approximated from a very sparse sampling of the original process, by considering only the 333 
timepoints with the largest amplitude (17, 18, 50). A similar observation has been formulated in 334 
the framework of edge-defined space (19, 51), which has drawn much attention and discussion 335 

(20, 22, 52-55), suggesting that such behavior may be expected for a broad range of processes 336 

while leaving the origin of these fluctuations an open question. 337 

A complementary approach to studying experimental data with unknown ground truth is 338 
to model the possible neural ground truth and propose its potential origins, assuming the neural 339 
basis of the signal. Previous modelling work has already suggested possible mechanisms for the 340 
emergence of co-fluctuations and their patterns based on the network’s structural topology and the 341 
oscillatory nature of the underlying dynamics (either via mass models [e.g. (56)] or by using simple 342 
phase-oscillators (16, 57)). In this new work we offer a direct biophysical connection to the ionic-343 

scale, linking the observed co-fluctuations to extracellular potassium levels and the associated 344 
Na+/K+ pump dynamics, which account for roughly half of brain energy consumption (58, 59) and 345 

thus contributing to the BOLD signal itself. 346 

We use a detailed biophysical model of infra-slow fluctuations in resting-state (32) in the 347 

human connectome which reproduces FC seen in humans (60) and analyze co-fluctuations 348 
dynamics in the framework of (19). We observed brief periods of high co-fluctuations, which are 349 
driven by underlying ionic changes reflected in [K+]o, Na+/K+ pump current, firing rate and average 350 

synaptic input variables of the model. We report similar results for the macaque connectome. We 351 
show that potassium dynamics affects the occurrence of co-fluctuation events and fixing [K+]o 352 

shifts inter-event intervals to a shorter range. Both increasing and decreasing neural patterns of 353 
firing and K+ levels were associated with different high co-fluctuations events. Clearance of [K+]o 354 
is determined by the effectivity of the Na+/K+ pump, and we found that manipulating the pump 355 
strength influenced the co-fluctuations events not only in amplitude but also in spatial extent. This 356 
implies a changed network configuration in which more nodes have a chance to coordinate their 357 

activity. 358 

Apart from ionic changes, both local and long-range E-I balance in connectivity influenced 359 

co-fluctuation events both in amplitude and node recruitment, though different E-I balance was 360 
required for maximizing amplitude or for node recruitment. We show that correlated activity 361 

across the network (i.e. functional connectivity) can be influenced by E-I balance as well, and was 362 
maximized for the low inhibitory - high excitatory condition. We conclude that low level ionic 363 
changes, which influence neural dynamics, propagate to BOLD signal and its co-fluctuations, and 364 
thus offer possible biophysical explanation underlying these events. 365 

 366 

Methods: 367 
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Ions dynamics and intrinsic excitability. Our computational model used in this study has been 368 
described in detail elsewhere (61-65). Briefly, excitatory (PYs) and inhibitory (INs) neurons were 369 

modeled as two-compartment neurons comprised of a dendritic and an axosomatic compartment. 370 
The temporal evolution of voltage for each compartment was described by the following equations: 371 

   𝐶𝑚
𝑑𝑉𝐷

𝑑𝑡
 =  −𝑔𝐷

𝑐 (𝑉𝐷 − 𝑉𝑆) − 𝐼𝐷
𝑙𝑒𝑎𝑘 − 𝐼𝐷

𝑝𝑢𝑚𝑝 − 𝐼𝐷
𝐼𝑛𝑡 372 

    𝑔𝑆
𝑐(𝑉𝐷 − 𝑉𝑆) =  − 𝐼𝑆

𝑙𝑒𝑎𝑘 − 𝐼𝑆
𝑝𝑢𝑚𝑝 − 𝐼𝑆

𝐼𝑛𝑡 373 

where 𝑉𝐷,𝑆 are the voltages of the dendritic and axosomatic compartments (respectively), 𝐼𝐷
𝑙𝑒𝑎𝑘 and 374 

𝐼𝑆
𝑙𝑒𝑎𝑘 are the sum of the ionic leak currents, 𝐼𝐷

𝑝𝑢𝑚𝑝
 and 𝐼𝑆

𝑝𝑢𝑚𝑝
 are the sum of the Na+ and K+ currents 375 

through the Na+/K+ pump, and 𝐼𝐷
𝐼𝑛𝑡 and 𝐼𝑆

𝐼𝑛𝑡 are the intrinsic currents for the dendritic and 376 

axosomatic compartments respectively. Each of these compartments contained conductance-based 377 

Hodgkin-Huxley type ionic currents. The axosomatic compartment contains the fast sodium 378 

current (𝐼𝑁𝑎), the persistent sodium current (𝐼𝑁𝑎𝑃), delayed-rectifier potassium current (𝐼𝐾𝑣), and 379 

the sodium-activated potassium current (𝐼𝐾𝑁𝑎). The intrinsic ion currents in the dendritic 380 

compartment include the fast sodium (𝐼𝑁𝑎), persistent sodium current (𝐼𝑁𝑎𝑃), slowly activating 381 

potassium current (𝐼𝐾𝑚), high-threshold calcium current (𝐼𝐶𝑎), calcium-activated potassium 382 

current (𝐼𝐾𝐶𝑎), hyperpolarization-activated depolarizing mix cationic currents (𝐼ℎ), and leak 383 
currents (63-65). Na+/K+ pump and KCC2 cotransporter Cl- extrusion were included in both neuron 384 

types. Additionally, ion concentration dynamics for extracellular and intracellular Na+ and K+ as 385 
well as intracellular Cl- and Ca2+ were determined by the intrinsic currents, transporter-mediated 386 

currents, leak currents, extracellular and intracellular diffusion, and glial [K+]o buffering as 387 
described in the following equations: 388 

𝑑[𝐾+]𝑜

𝑑𝑡
= (

𝑘

𝐹𝑑
) (𝐼𝐾

𝑝𝑢𝑚𝑝  +  𝐼∑𝐾
𝐼𝑛𝑡) + 𝛿𝑜 (

([𝐾+]𝑜−1+ [𝐾
+]𝑜+1)

2
− [𝐾+]𝑜) + 𝛿𝑜([𝐾

+]𝑜𝑐 − [𝐾
+]𝑜) + 𝐺  389 

𝐺 = 𝑘1([𝐵]𝑚𝑎𝑥 − [𝐵]) − 𝑘2[𝐾
+]𝑜[𝐵] 390 

𝑑[𝐵]

𝑑𝑡
=  𝑘1([𝐵]𝑚𝑎𝑥 − [𝐵]) − 𝑘2[𝐾

+]𝑜[𝐵] 391 

𝑑[𝐾+]𝑖
𝑑𝑡

= −(
𝑘

𝐹
) (𝐼𝐾

𝑝𝑢𝑚𝑝  +  𝐼∑𝐾
𝐼𝑛𝑡) + 𝛿𝑖([𝐾

+]𝑖𝑐 − [𝐾
+]𝑜) 392 

𝑑[𝑁𝑎+]𝑜
𝑑𝑡

= (
𝑘

𝐹𝑑
) (𝐼𝑁𝑎

𝑝𝑢𝑚𝑝
 +  𝐼∑𝑁𝑎

𝐼𝑛𝑡 ) + 𝛿𝑜 (
([𝑁𝑎+]𝑜−1 + [𝑁𝑎

+]𝑜+1)

2
− [𝑁𝑎+]𝑜) + 𝛿𝑜([𝑁𝑎

+]𝑜𝑐 − [𝑁𝑎
+]𝑜) 393 

𝑑[𝑁𝑎+]𝑖
𝑑𝑡

= −(
𝑘

𝐹
) (𝐼𝑁𝑎

𝑝𝑢𝑚𝑝  +  𝐼∑𝑁𝑎
𝐼𝑛𝑡 ) + 𝛿𝑖([𝑁𝑎

+]𝑖𝑐 − [𝑁𝑎
+]𝑜) 394 

𝑑[𝐶𝑙−]𝑖
𝑑𝑡

=  −(
𝑘

𝐹
) 𝐼∑𝐶𝑙
𝐼𝑛𝑡 + (

[𝐶𝑙−]𝑖∞ + [𝐶𝑙
−]𝑖 

𝜏𝐶𝑙
) 395 
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𝜏𝐶𝑙 =

(

 
 
100 +

𝜏𝐶𝑙∞

(1 + exp ( [𝐶𝑙−]𝑖∞ −
[𝐾+]𝑜
𝜏𝐾𝑜𝐶𝑙

))
)

 
 

 396 

𝑑[𝐶𝑎2+]𝑖
𝑑𝑡

=
(−5.1819 × 10−5𝐼𝐶𝑎)

𝐷𝐶𝑎
 +  (2.4 × 10−4 −

[𝐶𝑎2+]𝑖
𝜏𝐶𝑎

) 397 

where 𝐹 = 96489 C/mol, 𝑑 = 0.15 is the ratio of the extracellular compartment volume to surface 398 

area, the conversion factor 𝑘 = 10, 𝛿𝑜 is the scaled diffusion coefficient (𝛿𝑜 = 𝐷/∆𝑥) where 𝐷 = 399 

6x10-6 𝑐𝑚2/𝑠 is the diffusion constant and ∆𝑥 = 100 𝜇𝑚 is distance, [𝐾+]𝑜𝑐 and [𝑁𝑎+]𝑜𝑐 are the 400 

K+ and Na+ concentrations in the adjacent compartments, and [𝐾+]𝑜−1, [𝐾+]𝑜+1, [𝑁𝑎+]𝑜−1, and 401 

[𝑁𝑎+]𝑜+1 are the concentrations of K+ and Na+ in neighboring cells respectively. Astrocytic glial 402 

buffering of extracellular K+ (𝐺) was modeled as a free buffer ([𝐵]) with total buffer ([𝐵]𝑚𝑎𝑥) = 403 

500mM. The [𝐵] K+ binding and unbinding rates (𝑘1 and 𝑘2 respectively) were given by  404 

𝑘1 = 0.0008, 405 

𝑘2  =  𝑘1/(1 + 𝑒𝑥𝑝(([𝐾
+]𝑜 − [𝐾

+ ]𝑜𝑡ℎ)/(−1.05))), 406 

where [𝐾+ ]𝑜𝑡ℎ = 15mM is the half activation concentration of [𝐾+]𝑜. [𝐶𝑙−]𝑖∞ = 5mM, 𝜏𝐶𝑙∞ = 407 

2x104, and  𝜏𝐾𝑜𝐶𝑙 = 0.08s. 𝜏𝐶𝑎 and 𝐷𝐶𝑎were set to 300ms and 0.85 respectively. Extracellular K+ 408 

was also allowed to diffuse between the two compartments as well as between neighboring cells 409 

of the same type (ie. diffusion between PY-PYs and IN-INs). Some slow time constants can be 410 

found in our equations for glial K+ buffering and Cl- transport. However, these slow rate constants 411 

are faster than the observed infra-slow time scale of the neural dynamics arising in our network. 412 

 Synaptic properties and local network connectivity. Each local cluster or individual brain 413 
region in our model was comprised of 50 PY and 10 IN neurons. Each PY neuron made local 414 

excitatory connections onto 10 other PY neurons and received 10 excitatory connections from 415 
other PY neurons. PY neurons also formed excitatory connections onto inhibitory IN neurons. 416 
Each PY projected onto one IN and each IN formed inhibitory connections onto 5 PY neurons. 417 

Excitatory connections were mediated by AMPA and NMDA conductances (11 nS and 1 nS, 418 
respectively), and inhibitory connections were mediated by GABAA conductances (11 nS) such as 419 
those described previously (63-65). Excitatory connections from PY neurons onto IN neurons were 420 

mediated by AMPA and NMDA conductances (3.5 nS and 0.35 nS, respectively). To model in 421 
vivo conditions, all neurons of both types received additional afferent excitatory input as a random 422 

Poisson process. 423 

Macaque connectivity. We implemented the structural connectivity of 58 macaque brain 424 
regions. Connection strengths between brain regions were extracted from the CoCoMac database 425 
(http://cocomac.g-node.org). Functional connectivity was computed as the correlation coefficients 426 

between mean Na+/K+ pump currents or computed BOLD signals from individual clusters. 427 
Significance values were Bonferroni corrected to correct for multiple comparisons.  428 

Human connectivity. 429 
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Acquisition of MRI data and construction of structural connectivity was identical to the 430 
methods described in (36). To summarize, the data provided here are based on MRI scans of 90 431 

healthy control individuals. The construction of structural connectivity matrices was based on a 432 
connectome generated by probabilistic tractography on diffusion MRI data. We used ROIs from 433 
the widely used AAL atlas (66). The connectivity between two ROIs was based on the number of 434 
streamlines in the tractogram beginning in one ROI and terminating in the other ROI. Global 435 
coupling and the produced baseline dynamics were identical to the one used in (60). 436 

 437 
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 444 

Supplementary Figure 445 

 446 

Figure S1. A. Trace of edge-based time series estimated for entire human connectome network for 447 

1000sec simulation. B. Zoom-in of two periods when the RSS had values above 95th percentile. 448 
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From top, the plots show the RSS of the whole network, extracellular K+, Na+/K+ pump, firing 449 

rate, average synaptic input and BOLD across individual regions for the selected period. C. Violin 450 

plot show the distribution of [K+]o (top), firing rate (middle) and BOLD(bottom) for bins of RSS 451 

value from the entire simulation period. D. RSS event (defined as RSS > 95th percentile) triggered 452 

average of various neural measures across different regions within 150 sec window of the event.  453 

  454 
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