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Abstract

The neural mechanisms underlying the emergence of functional connectivity in resting-
state fMRI remain poorly understood. Recent studies suggest that resting-state activity consists of
brief periods of strong co-fluctuations among brain regions, which reflect overall functional
connectivity. Others report a continuum in co-fluctuations over time, with varying degree of
correlation to functional connectivity. These findings raise the critical question: what neural
processes underlie the temporal structure of resting-state activity? To address this, we used a
biophysically realistic whole-brain computational model in which resting-state activity emerged
from temporal variations in the ion concentrations of potassium (K*) and sodium (Na‘),
intracellular chloride (CI°), and the activity of the Na*/K* ATPase. The model reproduced transient
periods of high co-fluctuations, and the functional connectivity at different co-fluctuation levels
correlated to varying degrees with the connectivity measured over the entire simulation, in line
with experimental observations. The periods of high co-fluctuations were aligned with large
changes in extracellular ion concentrations. Furthermore, critical parameters governing ion
dynamics strongly affected both the timing of these transient events and the spatial structure of the
resulting functional connectivity. The balance of excitatory and inhibitory activity further
modulated their frequency and amplitude. Together, these results suggest that intrinsic fluctuations
in ion dynamics could serve as a plausible neural mechanism for the temporal organization of co-
fluctuations and resting-state functional connectivity.
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Introduction

Resting-state fMRI activity is widely used to assess brain function in both healthy and
disease conditions (1, 2). In particular, the functional connectivity (FC) derived from blood oxygen
level-dependent (BOLD) activity between different brain regions has been used to identify the
neural basis of cognitive processes (3, 4) and alterations in diseases (5). Coherent fluctuations
across distinct brain areas, typically quantified by Pearson correlation, give rise to functional
connectivity, which reflects the interactions between distributed brain regions at rest (6, 7).

Across many studies, a single FC measure is computed for the entire scanning session.
However, this approach ignores the temporal variations in FC, even though electrophysiological
recordings have shown that neural activity is dynamic and undergoes large fluctuations over time
(8-12). More recent work has focused on the temporal variations in FC and has indeed found that
FC varies across time (13). Sliding window analysis (14) has revealed transient “spontaneous
events” involving multiple subnetworks (15). More recently, single frame-based methods have
been applied to examine moment-to-moment variations in resting-state FC (16). In these works,
an “edge-centric” analysis, where pairwise regional co-fluctuations (edges) are measured at single
time frame resolution, was used (17-19). This approach further demonstrated that FC varies over
time, with ongoing resting-state activity punctuated by brief periods of widespread highly
correlated activity (16).

Several studies examining FC now suggest that FC varies over time, however, many
properties of time-resolved FC remain a contested topic (13). One issue concerns the contribution
of brief events to the overall FC. Studies using the single frame analyses have found that brief
periods of high co-fluctuation are strongly correlated with the overall FC measured across the
entire recording period (19). In contrast, other studies have reported a monotonic relationship
between the strength of co-fluctuation and the overall FC (20, 21). Further, statistical models have
suggested that static FC alone could drive such brief high co-fluctuation events (22). Collectively,
these findings have led to an ongoing debate whether co-fluctuations represent genuine neural
events (23-26) or arise from experimental factors (e.g. head motion) or statistical artifacts (e.g.
variability in sampling from static FC) (20-22, 27).

A complementary approach to studying the dynamics of FC is to use bottom-up methods
based on the modeling of spontaneous neural activity, and infer the derived statistical measures
from the simulated data. This approach assumes that neural signals drive BOLD activity, with
artifacts such as head motion or noise added on top. The level of detail captured by these methods
ranges from coarse-grained field or mass models that describe regional activity to single neuron
level models using spiking networks (28-30), with each scale contributing distinct mechanisms
(312).
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72 This new work focuses on a detailed biophysical model that generates infra-slow resting-
73 state activity due to ion dynamics (32). Our research was motivated by the following two questions:
74 (a) Does the detailed model reproduce the fast time-scale co-fluctuation dynamics observed in
75  experiments? (33) and (b) What neural mechanisms determine the temporal variations in co-
76  fluctuation and fMRI activity.

77 Using a large-scale computational network model based on the human connectome, we
78 show that co-fluctuations in resting-state fMRI activity, consistent with observations from
79  experiments, are linked to fluctuations in extracellular K™ concentrations ([K*]o). To establish
80  causality, we demonstrate that altering [K™]o ion dynamics or the Na* /K* pump alters the spatial
81  extentand distribution of co-fluctuations. Furthermore, we show that the balance of excitatory and
82 inhibitory network connectivity modulates the co-fluctuations. Overall, our computational model
83  offers a testable hypothesis for the neural mechanism underlying co-fluctuation events, providing
84  aframework for future experimental validation.

85  Results:

86 In this study, we used a biophysically realistic cortical network model based on our
87  previous work (34) to investigate the neural mechanisms underlying resting-state infra-slow
88  fluctuations. The model (see Methods for details) consisted of detailed two-compartment
89  excitatory pyramidal (PY) neurons and inhibitory interneurons (IN) with Hodgkin-Huxley
90  kinetics. Neurons were synaptically connected through AMPA, NMDA, and GABA-A synapses.
91  Each neuron received a random Poisson drive to capture stochastic afferent input. The model
92 incorporated dynamically varying ion concentrations for the major ion species, including K*, Na*,
93  CI;, and Ca?*, to mimic in vivo-like ionic dynamics.

94 Figure 1A illustrates the modeled ion concentrations, membrane ion channels, ion

95  exchangers/pumps, and extracellular astrocytic K* buffering. A “cluster” or “node” of neurons was

96 used to model an individual brain region, and consisted of a population of 50 excitatory (PY) and

97 10 inhibitory (IN) neurons. Neurons within a cluster were connected through synapses and coupled

98 by ion diffusion within the shared extracellular space. An example schematic of a single cluster is

99  shown in Figure 1B. Multiple clusters were modeled and connected via long-range feedforward
100  excitatory synaptic connections (E-to-E and E-to-I) (Figure 1C) to form a network of connected
101 brain regions. The long-range network connectivity was based on either CoCoMac brain data (35)
102  for macaque brain simulations or DW-MRI structural connectivity matrices (36) for human brain
103  simulations. Adjacency matrices for human and macaque simulations are shown in Figure 1D and
104  1E where color indicates the relative strength of the feedforward excitatory connections.

105
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Figure 1 - Basic model schematic from single compartment to global connectivity. A, Schematic
of single dendritic compartment including a list of intrinsic ionic currents included in the
compartment (left), ionic species modeled with dynamics concentrations, KCC2 cotransporter and
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110  Na*/K* pump, and astrocytic buffer of [K*]o. B, Schematic of a single cluster of excitatory and
111 inhibitory neurons used to model individual brain regions in the whole network. Black/red circles
112 represent excitatory/inhibitory neurons. Excitatory synapses are mediated by AMPA/NMDA
113 receptors while inhibitory synapses are mediated by GABA-A. C, Schematic representation of how
114  individual clusters for the whole network model. Clusters are connected via feedforward
115  excitation. D, Adjacency matrices for Macaque (left) and Human (right) network simulations.
116 Color indicates the relative strength of the feedforward connections between clusters.

117 In a network comprising of 58 brain regions of the macaque brain interconnected via
118  feedforward excitation, the average network firing rate exhibited spontaneous infra-slow
119  fluctuations (Figure 2A). As previously reported (32), these fluctuations were also present in the
120  network-wide mean [K*], concentration, intracellular sodium concentration ([Na*]i), and Na*/K*
121 pump current (Figure 2A). Figure 2B shows the corresponding power spectra for each of these
122 signals, displaying a prominent ~0.025 Hz peak, characteristic of resting-state infra-slow
123 fluctuations commonly observed in brain networks (37, 38). Similar dynamics were observed in a
124  network consisting of 45 brain regions of the human brain simulated using DW-MRI derived
125  connectivity (Figure 2D/E).

126 The temporal evolution of resting-state activity in the model aligns with experimental
127  observations

128  To examine temporal variations in functional connectivity during resting periods, we employed a
129  moment-to-moment estimation method previously used in experimental works (20, 39). In this
130  approach, moment-to-moment co-fluctuations are quantified using edge-based time series (ETS),
131 computed for each edge (pair of regions) as the product of z-scored time series from the two
132 regions. Since the Na*/K* pump is responsible for the majority of the oxygen consumption in the
133 brain, we used Na*/K* pump current as a proxy for the BOLD signal for each region to compute
134  the ETS in this work. Intuitively, ETS captures the relative synchronization between regions rather
135  than differences in absolute signal intensity. Figure 2C,F shows the resulting ETS (top) and the
136  corresponding root-sum squared (RSS) signal of the ETS (bottom) for both macaque and human
137  simulations. Consistent with (19), we found brief periods of high amplitude co-fluctuations, as
138  demonstrated by peaks in the RSS signal (Figure 2C,F, bottom). Additionally, the distribution of
139  RSS values resembled the skewed distribution for RSS signals reported for human fMRI BOLD
140  recordings (Figure 2C,F, bottom).
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142 Figure 2 - Model with dynamic ion concentrations captures peaks in moment-to-moment co-
143  fluctuations. A/D, Network average [K']o, [Na']i, Na*/K* pump, and firing rate showing
144  characteristic infra-slow fluctuations in both Macaque (A) and Human (D) simulations. B/E,
145  power spectra for the time series in A/D showing peaks around the infra-slow frequencies (0.01-
146 0.05Hz). C/F, Top heatmap shows the computed Edge-based Time Series (EST) for both Macaque
147  and Human network simulations. Bottom, the corresponding Root-Sum Squared (RSS) computed
148  from the EST reveals brief periods of high co-fluctuations throughout the networks. Left, inset
149  shows the distribution of RSS values showing a right skewed distribution.

150 Experimental studies have shown that periods of high amplitude co-fluctuations exhibit
151  strong correlations with time-averaged rsFC (17-19). In other words, short bursts of high co-
152  fluctuation between regions — moments when many areas are synchronously active — reproduce
153  much of the structure of the full rsFC. Thus, the brain’s overall connectivity pattern appears to be
154  driven by brief, high-amplitude co-fluctuation events. To test whether our model captured this
155  phenomenon, we computed the time-average rsFC of macaque and human simulations, and
156  compared them to the rsFC estimated only from the top 5% of time points in the RSS signal (95th
157  percentile). In other words, the time-averaged rsFC was computed using the entire time series,
158  whereas the “ETS-based” FC was derived from the segments of the time series showing the highest
159  synchrony across regions (top 5% of the RSS signal). Figure 3A/B shows the macaque/human
160  time-averaged rsFC (left) and the mean ETS-based FC from the top 5% RSS time points (middle).
161  The time-averaged rsFC and the ETS-based FC from only the top 5% RSS periods had high
162  similarity, as previously reported in humans. We found that the strongest correlations between
163  time-averaged rsFC and ETS-based FC occurred at the highest RSS amplitude time points (Figure
164  3A/B, right).

165 Next, we asked whether the inter-event interval of high amplitude co-fluctuations reflects
166  the infra-slow timescale of the resting-state fluctuations (Figure 3C). We found that the inter-event
167 intervals between high amplitude co-fluctuations (>=top 5%) displayed timescales similar to
168  endogenous resting-state fluctuations (Figure 3C, middle/right). The distribution of the inter-event
169 intervals had a long tail extending up to 400s. This suggests that the generation of high-value RSS
170  eventsis irregular and may involve spontaneous accumulation of intrinsic and ionic changes driven
171 by stochastic network activity. We further investigate these cellular and ionic mechanisms in
172 subsequent experiments.
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174  Figure 3 - Highest amplitude peaks in RSS correlate strongly with time-averaged rsFC. A/B,
175  Left shows the time-averaged resting-state functional connectivity (rsFC) computed across entire
176  simulated time for Macaque (A) and Human (B) networks. Middle panels show the average ETS-
177  based FC at peaks in RSS time series detected using a 95-percentile threshold. Right panels show
178  the correlation between the rsFC (left panel) and the ETS-based FC (middle panel) as a function
179  of percentile thresholds used to detect RSS peaks. Arrow indicates the 95-percentile threshold
180  condition. C, Left panel shows the RSS time series with detected peaks using a 95-percentile
181  threshold (green stars). Middle panel shows the distribution of inter-event intervals of detected
182  RSS peaks. Right panel shows the interevent interval as a function of percentile threshold used to
183  detect RSS peaks. Arrow indicates the 95-percentile condition.

184
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185  Co-fluctuations of resting-state in the model require dynamically varying [K*]o

186 As the results in Figure 3 suggest, in a model with dynamic ion concentrations, moment-
187  to-moment activity co-fluctuations occur spontaneously and contribute to the generation of the
188  time-averaged rsFC, leading us to investigate the role of neuronally-generated infra-slow activity
189 by blocking ion dynamics. Based on our previous work, where we identified [K*]o dynamics as a
190  critical component (40), here we primarily investigated the impact of varying [K*]o dynamics. We
191  simulated a human network (for an extended period of 2.5 hours of simulated fMRI signal) in 4
192  different conditions — normal, fixed [K*]o, removed global connectivity (G) (to disentangle
193  contribution of connectivity), and finally both fixed [K*]o and removed G. The effect is visible in
194  Figure 4A/B, where fixing [K*]o decreased variability in both firing rate and Na*/K* pump current
195  (Figure 4A/B, second panel), but not their relative levels (due to relative network hubness of each
196  node). Blocking G kept variability but removed the relative levels, and put every brain area on the
197  same basic level (Figure 4A/B, second panel). Blocking both combined the effect (fourth panel of
198  Figure 4A/B).

199 From an fTMRI perspective (Figure 4C), blocking G disrupts FC structure (which is partly
200 driven by structural long-range connectivity), while fixing [K™]o keeps shallow contours
201  (connectivity for fast interactions is still there, but the major oxygen consumer — Na*/K* pump —
202 and driver for slow BOLD signal is severely affected). From the perspective of the RSS
203  measurements (Figure 4D/E), we see changes in the RSS distributions, and a separation of co-
204  fluctuation inter-event intervals between normal and test scenarios, with fixed [K™]o resulting in a
205  more pronounced effect. This suggests that the potassium mechanism, being the main driver for
206 the infra-slow activity in the biophysical model (32), impacts co-fluctuation event statistics and
207  influences their occurrence.

208  Co-fluctuations are coupled with ion fluctuations

209 To further understand the temporal relationship between co-fluctuations and ion
210  concentrations/neural activity, we examined periods around co-fluctuation peaks using peak-
211  triggered averaging (Figure S1). We identified two different neural activity patterns that occur
212 during the co-fluctuation events. In the first case (Figure S1B, left), the RSS peak was associated
213 with a significant reduction in firing rate and [K™]o. The Na*/K* pump current had low values
214  during these peaks. In the second case (Figure S1B, right), the RSS peak was associated with
215  increased firing rate and [K*]o. In both cases, there was a small oscillatory nature to the RSS and
216 ion dynamics, as the peak corresponding to the reduction of firing rate was followed or preceded
217 by a peak with increase in firing rate (similarly for the peak with increased firing rate). This was
218  further verified when we examined the distribution of simulated BOLD, firing rate and [K*], for
219  different RSS values. High RSS values had distributions (Figure S1C) which are significantly
220  higher or lower compared to lower RSS values in all 3 variables. The overall average (Figure S1D)
221 captured only the increase in the firing rate and BOLD, suggesting the number of instances with
222 anincrease in firing rate and BOLD was higher than the reduction.
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224  Figure 4 — Effect of potassium dynamics on the Inter-event intervals. In all panels 4 conditions
225  are considered: Control: baseline human connectome model. Kof: model with removed potassium
226 dynamics. Gori: Model when long-range connections are removed. KGoi: Gost and Kot combined.
227  Top. Underlying physiological activity: A, average firing rate of each region (moving average,
228  window 30 [s]). B, average Na*/K* pump activity of each region (moving average, window 30
229  [s]). C, Corresponding functional connectivity for 4 respective conditions. Bottom. RSS-based
230 measures: D, Histogram of raw RSS values for each condition. E, Inter-Event interval length
231 histogram for two major conditions - Control and Ko (shaded lines indicate standard deviation,
232 14 trials). Inset shows all 4 conditions for comparison.
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Figure. 5— Decreasing Na*/K* pump increases recruitment of nodes in tail RSS events. A, Mean
[K*]o of networks with varying amounts of Na™/K*™ pump strengths. Percentages listed to the left
indicate the percent strength of Na*/K* pump with 100% being the default/baseline network
condition. B, ETS computed for 3 network conditions 90% (left), 100% (middle), and 110% (right)
Na*/K* pump strengths. Corresponding RSS time series below each ETS. Red dashed line
demarcates the threshold use to detect peaks and stars indicate detect peaks. C, Left, Distributions
of RSS values in B. Middle, Average number of active nodes per detected RSS peak as a function
of Na*/K™ pump strength. A node is considered active if their firing rate increases past its average
firing rate during that RSS peak. Right, Correlation between time-averaged rsFC and ETS-based
FC as a function of Na™/K™ pump strength. 95-percentile was used as a threshold for RSS peak

detection.
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247  Accumulation of ionic concentration is required for spontaneous fluctuations

248 The fluctuations of ion dynamics are both dependent on and influence the neural activity.
249 It undergoes a period of accumulation where it increases and periods of reduction when the
250 accumulated ions are removed through active processes such as Na*/K* pump activity. Thus, to
251 investigate further how local ionic fluctuations regulate global dynamics, we altered the strength
252 of the Na*/K* pump current locally in each brain region in a model with simulated human
253  connectivity. Reducing the Na*/K* pump current will result in lower clearance of the extracellular
254 ions including [K*]o ions, while increasing Na*/K* pump strength will lead to higher clearance and
255  lower amplitude in ion fluctuations.

256 Figure 5A shows the average [K*]o across all brain regions resulting from different amounts
257  of Na*/K" current strength. Reduction of Na*/K* pump strength (e.g. 90% pump strength) resulted
258 in large amplitude [K™]o fluctuations (Figure 5A). This was due to a slowdown in the ability of the
259  pump to respond to the gradual accumulation of extracellular K* resulting in [K*]o reaching higher
260 levels, and thereby increasing the duration of the gradual discharge of accumulated [K™]o.
261  Alternatively, increasing pump strength (e.g. 120% pump strength) resulted in a much more
262  efficient clearance of [K™], and smaller [K*], fluctuations (Figure 5A). As changes to the rise and
263 decay dynamics of [K™]o could impact properties of co-fluctuations in network activity, we
264  examined the effect of Na*/K* pump strength on ETS and RSS distributions. ETS computed for
265  low pump strengths (e.g. 90%) showed more pronounced periods of co-fluctuations in network
266  activity (Figure 5B, left). The corresponding RSS time series showed wider RSS peaks than
267  networks with stronger Na*/K* pump strengths (e.g. 100% or 110%, Figure 5B middle/right).
268  Similarly, we observed wider RSS distributions for networks with lower pump strengths (Figure
269 5C, left). We next asked how changes to Na*/K" pump strengths could drive the observed
270  differences in RSS and co-fluctuations in network activity. We found that RSS peaks in lower
271 pump strength conditions were characterized by a larger number of recruited nodes (Figure 5D,
272 middle). As the Na*/K* pump strength increased, the number of recruited nodes at the peaks in
273 RSS reduced. Similarly, networks with lower pump strengths displayed stronger correlations
274  between ETS-based FC and time-averaged rsFC (Figure 5D, right). As the Na*/K* pump regulates
275  [K*]o, lower pump strengths (e.g. 90% condition) allow for larger/slower [K*]o fluctuations
276  whereas higher pump strengths (e.g. 120%) lead to a tighter regulation of [K*], and smaller/faster
277  fluctuations. Larger/slow [K*], fluctuations increase the window of opportunity for nodes in the
278  network to synchronize or become active, thereby contributing to the RSS peaks. Alternatively,
279  increasing the pump strength means that when [K*]o begins to increase it is very quickly discharged
280 and so the [K*]o increase is short lived. This quick discharge reduces the window of opportunity
281  for node recruitment and formation of RSS peaks.
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283  Figure. 6 — Feedforward excitation drives more nodes recruitment (and vice versa for
284 inhibition). A/B, Left panel show the average number of active nodes per RSS peak as a function
285  of the strength of long-range feedforward excitatory (A)/inhibitory (B) synapses between nodes.
286  Right panel shows the average amplitude of the detected RSS peaks as a function of long-range
287  feedforward excitatory (A)/inhibitory (B) synapses. C, Left heatmap shows the effect of changes in
288  strength of local excitatory (y-axis) and local inhibitory (x-axis) synaptic strength on the average
289  number of active nodes per RSS peak. Middle heatmap shows the resulting number of tail events
290 identified from RSS distributions when varying local E-I balance. Right heatmap shows the mean
291  functional connectivity computed across the entire network for different E-1 balance conditions.

292  E-I balance determines the spatial recruitment during the events

293 In the previous section we explored how regulation of local ion concentration dynamics
294 influences node recruitment and moment-to-moment co-fluctuations in activity underlying FC. We
295  next asked how synaptic connectivity, either long-range or local, influenced these co-fluctuations
296  and node recruitment. First, we explored the role of long-range connectivity in node recruitment.
297  We varied the strength of excitatory feedforward connections between nodes in a network defined
298 by human structural connectivity (Figure 1E). We found that increasing all feedforward long-range
299  excitatory connections results in an increase in node recruitment at RSS peaks (Figure 6A, left).
300 This increase in node recruitment was accompanied by increases in the amplitudes of RSS peaks
301  (Figure 6A, right). Alternatively, we observed a negative correlation between long-range
302 feedforward inhibition and node recruitment (Figure 6B, left). Increasing feedforward inhibition
303  resulted in aslight decrease in the amplitude of RSS peaks (Figure 6B, right). These results suggest
304 that long-range connectivity can influence co-fluctuations in activity by modulating recruitment
305 of nodes and synchronization of the network as a whole. Next, we explored the role of local
306  excitatory/inhibitory (E-1) balance on co-fluctuations. For these experiments, we kept feedforward
307 connection strengths constant (i.e. 100% scaling) and only varied the excitatory/inhibitory
308 synapses within each node. By doing this sweep in local E-1 balance, we found that node
309 recruitment at RSS peaks was highest in conditions described by low inhibition (Figure 6C, left).
310 Interestingly, not all conditions where node recruitment was highest correlated with increases in
311  the number of RSS tail events or peaks (Figure 6C, middle). We found that the highest number of
312  tail events or RSS peaks occurred in conditions of high excitation and low inhibition (Figure 6C,
313  middle). Similarly, the highest correlated activity across the network was seen in these same low
314 inhibition / high excitation conditions (Figure 6C, right). These findings suggest that local E-I
315  balance is crucial for correlated activity across the whole network and impacts moment-to-moment
316  co-fluctuations underlying FC. Together, these results demonstrate the role of both local and long-
317  range synaptic strengths on the properties of co-fluctuations in activity driving rsFC.

318
319 Discussion

320 BOLD activity in the brain shows spontaneous infra-slow fluctuations (41). While there is
321  ongoing discussion about the relative contribution of different physiological factors to the BOLD
322 signal (7), there is ample evidence supporting a neural origin of infra-slow fluctuations (8-12, 42),
323  and the derived static and time-varying functional connectivity (see (13) for a review). FC is
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324  typically measured using linear Pearson correlation coefficient, as the nonlinear contributions to
325  coupling are practically negligible (43, 44). Notably, the FC is traditionally computed from the full
326  time series, based on the assumption of stationarity and the need for sufficiently long recordings
327 toobtainareliable estimate of FC (45). Of course, alternative approaches have also been proposed,
328  often centered on the idea of switching brain states characterized by distinct FC (13, 14, 46),
329 although the inference of such states may be methodologically problematic (27, 47-49). In an
330 extreme case, one could view brain dynamics as a progression of states defined by an instantaneous
331  vector of brain activation across voxels, or regions, with the observed FC representing the time-
332 averaged result of the observation of the covariance. From this perspective, stationary FC can be
333 well approximated from a very sparse sampling of the original process, by considering only the
334  timepoints with the largest amplitude (17, 18, 50). A similar observation has been formulated in
335 the framework of edge-defined space (19, 51), which has drawn much attention and discussion
336 (20, 22, 52-55), suggesting that such behavior may be expected for a broad range of processes
337  while leaving the origin of these fluctuations an open question.

338 A complementary approach to studying experimental data with unknown ground truth is
339  to model the possible neural ground truth and propose its potential origins, assuming the neural
340 basis of the signal. Previous modelling work has already suggested possible mechanisms for the
341  emergence of co-fluctuations and their patterns based on the network’s structural topology and the
342  oscillatory nature of the underlying dynamics (either via mass models [e.g. (56)] or by using simple
343  phase-oscillators (16, 57)). In this new work we offer a direct biophysical connection to the ionic-
344  scale, linking the observed co-fluctuations to extracellular potassium levels and the associated
345  Na'/K*" pump dynamics, which account for roughly half of brain energy consumption (58, 59) and
346  thus contributing to the BOLD signal itself.

347 We use a detailed biophysical model of infra-slow fluctuations in resting-state (32) in the
348 human connectome which reproduces FC seen in humans (60) and analyze co-fluctuations
349  dynamics in the framework of (19). We observed brief periods of high co-fluctuations, which are
350 driven by underlying ionic changes reflected in [K*]o, Na*/K* pump current, firing rate and average
351  synaptic input variables of the model. We report similar results for the macaque connectome. We
352 show that potassium dynamics affects the occurrence of co-fluctuation events and fixing [K*]o
353  shifts inter-event intervals to a shorter range. Both increasing and decreasing neural patterns of
354  firing and K* levels were associated with different high co-fluctuations events. Clearance of [K™]o
355 s determined by the effectivity of the Na*/K* pump, and we found that manipulating the pump
356  strength influenced the co-fluctuations events not only in amplitude but also in spatial extent. This
357 implies a changed network configuration in which more nodes have a chance to coordinate their
358  activity.

359 Apart from ionic changes, both local and long-range E-I balance in connectivity influenced
360 co-fluctuation events both in amplitude and node recruitment, though different E-1 balance was
361  required for maximizing amplitude or for node recruitment. We show that correlated activity
362  across the network (i.e. functional connectivity) can be influenced by E-I balance as well, and was
363  maximized for the low inhibitory - high excitatory condition. We conclude that low level ionic
364  changes, which influence neural dynamics, propagate to BOLD signal and its co-fluctuations, and
365 thus offer possible biophysical explanation underlying these events.

366
367 Methods:
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368 lons dynamics and intrinsic excitability. Our computational model used in this study has been
369  described in detail elsewhere (61-65). Briefly, excitatory (PYs) and inhibitory (INS) neurons were
370  modeled as two-compartment neurons comprised of a dendritic and an axosomatic compartment.
371 Thetemporal evolution of voltage for each compartment was described by the following equations:

372 c 2o _

m o = —g5(Vp — Vs) — I — 5P — It

373 gs(Vp — Vg) = — [£9% — [Z¥™P — [

374  where V,, ¢ are the voltages of the dendritic and axosomatic compartments (respectively), I5%* and
375  [{% are the sum of the ionic leak currents, I5"™ and IF*™™ are the sum of the Na* and K* currents
376  through the Na*/K* pump, and I5* and I{** are the intrinsic currents for the dendritic and
377  axosomatic compartments respectively. Each of these compartments contained conductance-based
378  Hodgkin-Huxley type ionic currents. The axosomatic compartment contains the fast sodium
379  current (Iy,), the persistent sodium current (Iy,p), delayed-rectifier potassium current (Ix,,), and
380 the sodium-activated potassium current (Ixyo). The intrinsic ion currents in the dendritic
381  compartment include the fast sodium (Iy,), persistent sodium current (Iy,p), slowly activating
382  potassium current (Ig,,), high-threshold calcium current (I,), calcium-activated potassium
383  current (Ixcq), hyperpolarization-activated depolarizing mix cationic currents (I), and leak
384  currents (63-65). Na*/K* pump and KCC2 cotransporter CI” extrusion were included in both neuron
385  types. Additionally, ion concentration dynamics for extracellular and intracellular Na™ and K™ as
386  well as intracellular CI- and Ca?* were determined by the intrinsic currents, transporter-mediated
387  currents, leak currents, extracellular and intracellular diffusion, and glial [K*]o buffering as
388  described in the following equations:

se9 Al (D) (2 + i) + 6, (P o) (ie4),) 4 5, (K o — [K71) + G
390 G = kl([B]max - [B]) - kZ[K+]o[B]
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398  where F = 96489 C/mol, d = 0.15 is the ratio of the extracellular compartment volume to surface
399  area, the conversion factor k = 10, g, is the scaled diffusion coefficient (6, = D/Ax) where D =
400  6x10° cm?/s is the diffusion constant and Ax = 100 um is distance, [K*],. and [Na*],. are the
401  K*and Na* concentrations in the adjacent compartments, and [K*],_1, [K]o+1, [Na*],—1, and
402  [Na*],., are the concentrations of K* and Na* in neighboring cells respectively. Astrocytic glial
403  buffering of extracellular K* (G) was modeled as a free buffer ([B]) with total buffer ([Blax) =
404  500mM. The [B] K* binding and unbinding rates (k, and k, respectively) were given by

405 k. =0.0008,

406 ky = ki/(1+exp(([K*]o = [K™ Joen)/(=1.05))),

407  where [K* ], = 15mM is the half activation concentration of [K*],. [Cl ]ico = 5MM, T(joo =
408  2x10% and tg,c; = 0.08s. T, and Do Were set to 300ms and 0.85 respectively. Extracellular K*
409  was also allowed to diffuse between the two compartments as well as between neighboring cells
410  of the same type (ie. diffusion between PY-PYs and IN-INs). Some slow time constants can be
411 found in our equations for glial K* buffering and CI" transport. However, these slow rate constants
412  are faster than the observed infra-slow time scale of the neural dynamics arising in our network.

413 Synaptic properties and local network connectivity. Each local cluster or individual brain
414  region in our model was comprised of 50 PY and 10 IN neurons. Each PY neuron made local
415  excitatory connections onto 10 other PY neurons and received 10 excitatory connections from
416  other PY neurons. PY neurons also formed excitatory connections onto inhibitory IN neurons.
417  Each PY projected onto one IN and each IN formed inhibitory connections onto 5 PY neurons.
418  Excitatory connections were mediated by AMPA and NMDA conductances (11 nS and 1 nS,
419  respectively), and inhibitory connections were mediated by GABAAa conductances (11 nS) such as
420  those described previously (63-65). Excitatory connections from PY neurons onto IN neurons were
421  mediated by AMPA and NMDA conductances (3.5 nS and 0.35 nS, respectively). To model in
422  vivo conditions, all neurons of both types received additional afferent excitatory input as a random
423  Poisson process.

424 Macaque connectivity. We implemented the structural connectivity of 58 macaque brain
425  regions. Connection strengths between brain regions were extracted from the CoCoMac database
426  (http://cocomac.g-node.org). Functional connectivity was computed as the correlation coefficients
427  between mean Na'/K* pump currents or computed BOLD signals from individual clusters.
428  Significance values were Bonferroni corrected to correct for multiple comparisons.

429 Human connectivity.
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Acquisition of MRI data and construction of structural connectivity was identical to the
methods described in (36). To summarize, the data provided here are based on MRI scans of 90
healthy control individuals. The construction of structural connectivity matrices was based on a
connectome generated by probabilistic tractography on diffusion MRI data. We used ROIs from
the widely used AAL atlas (66). The connectivity between two ROIs was based on the number of
streamlines in the tractogram beginning in one ROI and terminating in the other ROI. Global
coupling and the produced baseline dynamics were identical to the one used in (60).
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Figure S1. A. Trace of edge-based time series estimated for entire human connectome network for
1000sec simulation. B. Zoom-in of two periods when the RSS had values above 95th percentile.
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From top, the plots show the RSS of the whole network, extracellular K*, Na*/K* pump, firing
rate, average synaptic input and BOLD across individual regions for the selected period. C. Violin
plot show the distribution of [K*]o (top), firing rate (middle) and BOLD(bottom) for bins of RSS
value from the entire simulation period. D. RSS event (defined as RSS > 95th percentile) triggered
average of various neural measures across different regions within 150 sec window of the event.
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