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Czech Technical University, Břehová 7, 115 19, Prague, Czech Republic and
3National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
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The description of the dynamics of complex systems, in particular the capture of the interaction
structure and causal relationships between elements of the system, is one of the central questions of
interdisciplinary research. While the characterization of pairwise causal interactions is a relatively
ripe field with established theoretical concepts and the current focus is on technical issues of their
efficient estimation, it turns out that the standard concepts such as Granger causality or transfer
entropy may not faithfully reflect possible synergies or interactions of higher orders, phenomena
highly relevant for many real-world complex systems. In this paper, we propose a generalization
and refinement of the information-theoretic approach to causal inference, enabling the description of
truly multivariate, rather than multiple pairwise, causal interactions, and moving thus from causal
networks to causal hypernetworks. In particular, while keeping the ability to control for medi-
ating variables or common causes, in case of purely synergetic interactions such as the exclusive
disjunction, it ascribes the causal role to the multivariate causal set but not to individual inputs,
distinguishing it thus from the case of e.g. two additive univariate causes. We demonstrate this con-
cept by application to illustrative theoretical examples as well as a biophysically realistic simulation
of biological neuronal dynamics recently reported to employ synergetic computations.

I. INTRODUCTION

The study of complex networks is a rapidly developing
field with applications across various scientific disciplines
such as neuroscience, climate research, computer science,
economics, energetics, or game theory [1]. The general
approach views a given system as a network of interact-
ing subsystems. A central challenge is to estimate the
pattern of interactions from observed data. The formal
definition and methods for estimating causal effects from
one element to another have been thoroughly studied.

A common approach is the Granger causality [2] - a
concept based on two principles: the cause happens be-
fore its effect, and the cause carries some additional in-
formation about the effect (not included in the ’rest of
the universe’). A nonlinear generalization of this con-
cept - transfer entropy [3, 4] - is based on the same
principles. While Granger causality is typically cast in
the framework based on prediction via linear vector au-
toregressive processes, transfer entropy is an information-
theoretic measure aiming to capture time-directed infor-
mation transfer of arbitrary functional form. Indeed,
for Gaussian processes, the two concepts are equiva-
lent [5]. It is useful to conceptualize Granger causal-
ity as a fundamental refinement of the notoriously naive
concept of causality as correlation by adding the require-
ment of the candidate cause holding correlation (predic-
tion/information) on top of that included in the target
past and the rest of the universe. This key refinement
allows ascribing the causal effect more conservatively, in
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particular controlling for common sources or mediating
variables. In this work, we suggest yet another refinement
that would avoid ascribing causal status to variables, that
only contribute through multivariate interactions, while
keeping the original safeguards of Granger’s approach.

Another prominent approach to causality, developed
by Judea Pearl [6], assumes that so-called interventions
can be carried out, making it a more difficult concept to
apply due to the need to be able to carry out the interven-
tions and assess their effects (analytically or experimen-
tally). On the other hand, unlike Granger causality or
transfer entropy, Pearl’s framework does not assume the
temporal organization of the investigated data, allowing
thus causal inference even without sampling time series
with proper temporal resolution. Nevertheless, the ap-
proaches are to a large extent related and, in particular,
describe the causal structure of the investigated system
as a directed graph between the variables.

We suggest that it is useful to generalize this view to
consider representing causal structure by hypergraphs
rather than graphs/networks. Let us consider a pris-
tine example of purely higher order interaction between
source variables in causing the target variables: two can-

didate source variables X1, X2
iid∼ Be(0.5) and a target

variable Y defined as Y = XOR(X1, X2), or in the con-
text of time series Y (t + 1) = XOR(X1(t), X2(t)). Note
that logical XOR is zero if the inputs are equal; oth-
erwise, it is one. In this system, pairwise mutual in-
formation I(X1, Y ) between X1 and Y is equal to zero,
and so is I(X2, Y ). In other words, neither of the can-
didate source variables carries (on their own) informa-
tion about the target variable Y ; they play a role, but
only together. The XOR function provides a pristine ex-
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ample of purely higher order interaction between source
variables in causing the target variables. Nevertheless,
Granger would ascribe causal status to both X1 and X2

(by conditioning each one on the other). One may, how-
ever, argue that such representation by a graph with the
causal links (from X1 to Y and from X2 to Y ) is obfus-
cating something important, as it does not distinguish
this system from, say, Y = X1 + X2, where each vari-
able indeed carries information about Y on its own. The
intuition suggests one should not exactly speak about
the causal effect between X1 (or X2) and Y : they are
even independent. At the same time, representing the
system by an empty graph and denying causal status to
both variables seems intuitively incorrect as well, as that
would collide with the case of completely unpredictable
Y . Thus, maybe most intuitively, as only the multivari-
ate information I({X1, X2}, Y ) is non-zero (in particular
1 bit), we suggest to state that there is no causal link,
but there is a causal hyperlink from the set {X1, X2} to
Y . Overall, the system should not be represented by a
directed graph but by a directed hypergraph.

While the XOR function may seem artificial, higher-
order interactions are commonly discussed in the con-
text of modelling complex systems in physics [7], neuro-
science [8, 9], ecology [10], social sciences [11] and many
more.

Despite this challenge is increasingly recognized in the
causal inference community [12–14], formal refinement of
causality methods such as transfer entropy in this direc-
tion is still missing – a gap we aim to fill.

II. TRANSFER ENTROPY & PROBLEM
STATEMENT

In the following text, we assume that for each tar-
get variable Y , a set of candidate source variables X =
{X1, . . . , Xn} is known a priori. In practice, such as-
sumption is justified either by Granger causality-like rea-
soning: the candidate source variables are all those tem-
porally preceding the target variable, or by (additional)
theoretical arguments. The transfer entropy TE (the pos-
itivity of which defines the presence of causal effect from
Xi to Y ) is then defined as the conditional mutual in-
formation between Xi and Y conditioned on all other
potential sources (i.e. X∖ {Xi}):

TEXi→Y = I (Xi, Y |X∖ {Xi}) . (1)

As already mentioned, we aim to generalize the trans-
fer entropy concept to more faithfully represent causal
structure in the presence of higher-order causal interac-
tions. A natural generalization is to define existence of a
causal effect of a set XI = {Xi1 , . . . , Xik} on target Y as

I ({Xi1 , . . . , Xik}, Y |X∖ {Xi1 , . . . , Xik}) > 0. (2)

Let us revisit the TE behaviour in the XOR example:

X1, X2
iid∼ Be(0.5)

Y = XOR (X1, X2) .
(3)

What would such generalization of TE (or Pearl’s di-
rect causal effect inference) conclude? First, it infers a
causal link from the set {X1, X2}: I({X1, X2}, Y ) = 1
bit. However, it also infers causal link from X1 (X2), as

I (X1, Y |X2) = I ({X1, X2}, Y )− I (X2, Y ) = 1bit. (4)

As a side note, in practice, these individual links might
remain undetected, as commonly used causal network in-
ference algorithms progress iteratively from testing uni-
variate predictors and may stop before discovering such
conditional dependence – see [13] for discussion, and [14]
for an example of an updated (yet, therefore, slower) al-
gorithm more robust in this regard. Also note that the
XOR example is straightforwardly generalizable to the
k-variable higher order interaction by considering Y as a

sum of variables X1, X2, . . . Xk−1
iid∼ Be(0.5) modulo 2.

Again, even the knowledge of all but one of the source
variables provides no information about Y without know-
ing the last one; it is the interaction of all k − 1 sources
that provides the target predictability.
Setting aside the implementation details, even such

multivariate TE definition does not distinguish the dis-
tinctive synergistic causal effect in the XOR example,
compared to, e.g. the case of summing two independent
normally distributed variables. Two issues arise: first,
that TE concludes that X1 has a ’causal effect’ on Y al-
though X1 does not hold any information about Y, might
be considered superfluous, as the information ’belongs’ to
the pair (which multivariate TE correctly marks). On the
other hand, in the case of the linear sum function, as the
pair does not carry information on top of each variable,
one might not want to mark the pair as causal per se,
but only the individual variables.

III. CAUSAL EFFECT

The first issue suggests the suitability of including an
extra condition (of non-zero mutual information between
the source and the target) in the definition of a causal
effect. Indeed, mutual information alone cannot be con-
sidered a measure of any causality since it could only
mean that variables are affected by a common source,
however, it makes good sense to consider it as an addi-
tional necessary condition of a (direct) causal effect. Such
a necessary condition would solve the problem with the
above-mentioned example (3), but the situation can be
much more complicated. Consider the following system:

X1, . . . Xp, Ep+1, . . . , En
iid∼ Be(0.5),

Xk = X1 + Ek, k ∈ {p+ 1, . . . , n}

Y =

p∑
k=2

XOR(X1, Xk) +

n∑
k=p+1

Xk
(5)
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The system is constructed such that X1 does not
directly affect Y by itself, but it affects Y indirectly
through mediating variables Xp+1, . . . , Xn. Also X1 af-
fects Y through pairwise interactions: each pair {X1, Xi}
for i ∈ {2, . . . , p} affects Y . Note that both the mutual
information I(X1, Y ) and the fully conditional mutual
information (transfer entropy) I ((X1, Y ) |X∖ {X1}) are
greater than zero, suggesting thus a causal effect of X1

on Y . In fact, all of the conditional mutual informations
I(X1, Y |S) are positive, except I (X1, Y |Xp+1, . . . , Xn).
Indeed, if any of variables {X2, . . . , Xp} is in the condi-

tion, the information is non-zero because of the effect of
the predictor {X1, Xi} (follows from chain rule - eq. (4)).
On the other hand, if any of variables {Xp+1, . . . , Xn} is
missing in the condition, information is non-zero because
they are mediators of X1 and Y (information flows indi-
rectly from X1 to Y through them). Thus, we suggest to
define a causal effect as follows.

Definition 1. Let X = {X1, . . . , Xn} be a set of candi-
date source variables and Y a target variable. There is a
causal effect from set {Xi1 , . . . , Xik} to Y if and only if

I({Xi1 , . . . , Xik}, Y |S) > 0 (6)

for all S ⊆ X∖ {Xi1 , . . . , Xik}.
The optimally conditioned transfer entropy is given as:

OCTEXI→Y = min
S⊆X∖XI

I (XI , Y |S) . (7)

Notably, the definition of the causal effect of a set
of variables typically enforces the causal influence of an
arbitrary set containing a variable with a causal effect.
Consider, for example, a simple linear system where the
variable Y is causally affected just by variable X1 plus
some noise: Y = X1 + EY , and in the system, there are
also other variables {X2, . . . , Xn} independent on Y and
X1. Then, all sets containing X1 are also causally affect-
ing Y . Note that similar behaviour (supersets of causes
defined as causes irrespective of further value in predic-
tion) also holds for (a multivariate variant of) transfer
entropy or Pearl’s causality. In other words, although
the Definition 1 of causal effect avoids attributing higher-
order causal effects to individual variables, it still does
not by itself distinguish multivariate causes that are triv-
ial in the sense of inherited from its subsets from nontriv-
ial higher-order multivariate causal effects.

We suggest one may add this distinction of a unique
higher-order causal effect by interpreting differently
the observation of multivariate causes in the pres-
ence/absence of the causal effects of the subsets. Further,
to distinguish purely additive from synergistic multivari-
ate causality, one may quantify the higher order causal
information not induced trivially by the subsets; suitable
approaches [8, 15, 16] are the subject of further research.

Returning to the XOR example, note that the resulting
causal graph of the system also depends on the distribu-
tion of the variables X1 and X2. Consider three different
distributions, see Table I. In all cases (p1, p2, p3), X1 and
X2 are independent variables with Bernoulli distribution.

X1 X2 Y = XOR (X1, X2) p1 p2 p3
0 0 0 0.25 0.10 0.06
0 1 1 0.25 0.40 0.24
1 0 1 0.25 0.10 0.14
1 1 0 0.25 0.40 0.56

Table I. Function XOR(X1, X2), where X1 and X2 are
independent random variables with distributions: i) p1 :
X1, X2 ∼ Be(0.5), ii) p2 : X1 ∼ Be(0.5), X2 ∼ Be(0.8)
iii) p3 : X1 ∼ Be(0.7), X2 ∼ Be(0.8).

We have already discussed the first case with uniformly
distributed probabilities. In the second case, X1 is uni-
formly distributed, butX2 ∼ Be(0.8).While I(X2, Y ) re-
mains zero, I(X1, Y ) is positive, as is I(X1, Y |X2). Vari-
able X1 thus has a causal effect on Y only due to the
change in the distribution X2. The further the variable
X2 deviates from the uniform distribution, the more in-
formationX1 has about Y and the unique contribution of
the pair {X1, X2} decreases. In the last case, where both
variables deviate from the uniform distribution, both X1

and X2 have a causal effect on Y , and they also have a
unique contribution as a pair {X1, X2}.

IV. DENDRITIC COMPUTATION OF XOR

Higher order (synergistic) dependencies occur in sys-
tems across disciplines, such as computer science or neu-
roscience. For instance, XOR based detectors are fre-
quently used in algorithmic image edge detection [17, 18].
For each pixel, the logical XOR mask is applied to a pair
of adjacent pixels, and positive XOR value marks an edge
in the picture. A similar processing principle can be
found in some retinal ganglion cells, which respond to
differences in intensity across the receptive field while ig-
noring spatially uniform input and make those neurons
well posited to detect edges in visual images [19].

We further focus more closely on another example of
higher order causal interactions in neuronal dynamics.
Despite the long-standing assumption that computing
logical XOR requires a circuit of connected neurons, re-
cent work showed that calcium mediated dendritic action
potentials (dCaAPs) in a single human cortical neuron
can compute this function [20]. In essence, this compu-
tation is provided by anti-coincidence behaviour on the
apical dendrite of the pyramidal neuron, where two si-
multaneous synaptic inputs surprisingly reduce dCaAP
amplitude (in contrast to the traditional amplification of
dendritic AP). We use the biophysical model of dCaAPs
provided by [20], simulating its dynamics while dynam-
ically modulating the synaptic inputs coming from two
distinct sources, the activity of which corresponded to
two parallel sequentially generated logical inputs, where
low/high synaptic input represented logical value of 0/1
respectively.

The resulting activity at the apical dendrite (”XOR
gate”) is shown in Fig. 1.
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Figure 1. Membrane voltage at the dendritic site of the
dCaAP mechanism. Top. Dynamics of 4 logical configura-
tions. In each panel, the system receives stable synaptic input
for 4 s from two distinct synaptic pathways [X1, X2], the asso-
ciated logical values shown in labels at the bottom. Unequal
input ([0,1] or [1,0]) causes large dendritic spikes. Coinci-
dent activity in both pathways ([1,1]) shows as depolarized
compared to inactive pathways ([0,0]) but will not make the
neuron fire. Bottom. Altering input for each 250 ms window.

Following [20], we consider two settings: in setting 1,
the location of the dCaAP mechanism on the dendrite
is distant from the soma (Fig. 2, left), and in setting 2
the location is closer, thereby allowing some of the large
dendritic spikes to trigger somatic spikes (Fig. 2, right).

The simulated 100 seconds were divided into 250 ms
windows. Then we binarized to the apical dendrite volt-
ages (Fig. 2, top) to obtain the target variable Y (Ỹ for
setting 2): we assigned a value of 1 to the Y if a spiking
rate in the window is above 10 Hz and 0 otherwise (spike
was defined as the membrane voltage exceeding 0 mV).

Fig. 3 shows the measured distribution of the output
variables. The distribution in all three cases follows XOR
distribution, albeit for the somatic compartment, it is less
accurate due to noisy transmission from the dendrite.

To determine causal relationships, the (conditional)
mutual information between the input variables (X1, X2

and {X1, X2}) and the target variable Y was evaluated.
As the finite sample estimate of mutual information is
generally nonzero, even for independent variables, a sta-
tistical test is required. To evaluate the null hypothesis
I(X,Y |Z) = 0 at significance level θ = 0.01, we use a
permutation test (using N = 1000 realizations of shuf-
fled source variable to generate the null distribution).

For setting 1, we infer both I(X1, Y ) = 0 and
I(X2, Y ) = 0, while I({X1, X2}, Y ) = 0.46; thus we
conclude by the definition of causality (6) there is no
causal influence from X1 or X2, but there is a causal
(hyper)link from {X1, X2} to Y with a causal strength
of OCTE{X1,X2}→Y = 0.46. For the setting 2, we get

Figure 2. Example of membrane voltage on the apical den-
drite and soma of the neuron. Top panels. Membrane poten-
tial at the dendritic site of dCaAP mechanism (as in Fig. 1).
Bottom. Membrane voltage at the soma of the neuron. Left
panels – distant case. dCaAP mechanism is located 550 µm
from the soma (corresponds to [20], Fig. 3). Right – proxi-
mal case. dCaAP mechanism is located 287 µm from the soma
(corresponds to [20], Fig. S9). For model details, see the code
deposition in modelDB (https://modeldb.science/2016664).

Figure 3. Distribution of output variables Y , Ỹ and Z̃ de-
pending on input configuration [X1, X2]. Left. Distribution
on the apical dendrite – distant case. Middle/Right. Distri-
bution on the apical dendrite/soma – proximal case.

the same causal structure between the synaptic input
and activity on apical dendrite with a causal strength
of OCTE{X1,X2}→Ỹ = 0.56.

We can further evaluate the mediating role of the api-
cal dendrite on the somatic spiking in setting 2. We add
the variable Z̃ representing somatic spiking to the mon-
itored system (see right bottom corner of the Fig. 2).

The set of potential sources for target variable Z̃ are
all subsets of {X1, X2, Y }. We obtain I(X1, Z̃) = 0,

I(X2, Z̃) = 0, thus neither X1 nor X2 are causal parents.

Although I({X1, X2}, Z̃) ̸= 0, the predictor {X1, X2} is

not a causal parent of Z̃ because I({X1, X2}, Z̃|Ỹ ) = 0.

In this case, all information is mediated by Ỹ , thus link
from {X1, X2} to Z̃ is indirect. The only nontrivial

causal parent of the Z̃ variable is Ỹ with causal strength
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Figure 4. Left: Scheme of pyramidal neuron. X1 andX2 mark
two distinct synaptic pathways (inputs), Y the output of the

dCaAP mechanism on the apical dendrite (Ỹ for setting 2), Z

(Z̃) the neuron soma. Right: Corresponding causal diagram.

OCTEỸ→Z̃ = 0.04 (as discussed, all the supersets of Ỹ

also are causal parents of Z̃, however, as here they carry
no extra information, being thus a purely formal, rather
than unique, multivariate cause). The estimated causal
scheme, a sketch of the neuron, is shown in Figure 4.

V. CONCLUSIONS

We studied the problem of defining the causal effect
in systems exhibiting higher-order causal patterns such
as XOR-like interactions. We showed that the traditional
approaches do not provide sufficiently refined answer. We
tackle this challenge by introducing a new, refined defi-
nition of causal structure and discuss its relation to the
original definition. A trade-off for the increased expres-
siveness of the hypernetwork definition is its exponen-
tial complexity due to formally requiring iteration over a
powerset in the condition. This calls for iterative approx-
imation algorithms already commonly utilized for trans-
fer entropy estimation. The main theoretical challenge
lies then in treating conveniently the cases of combined
synergistic and direct, or even mediating, causal effect.
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