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Abstract Five parameters of one of the most common neu-
ronal models, the diffusion leaky integrate-and-fire model,
also known as the Ornstein-Uhlenbeck neuronal model, were
estimated on the basis of intracellular recording. These pa-
rameters can be classified into two categories. Three of them
(the membrane time constant, the resting potential and the fir-
ing threshold) characterize the neuron itself. The remaining
two characterize the neuronal input. The intracellular data
were collected during spontaneous firing, which in this case
is characterized by a Poisson process of interspike intervals.
Two methods for the estimation were applied, the regression
method and the maximum-likelihood method. Both methods
permit to estimate the input parameters and the membrane
time constant in a short time window (a single interspike in-
terval). We found that, at least in our example, the regression
method gave more consistent results than the maximum-
likelihood method. The estimates of the input parameters
show the asymptotical normality, which can be further used
for statistical testing, under the condition that the data are col-
lected in different experimental situations. The model neu-
ron, as deduced from the determined parameters, works in
a subthreshold regimen. This result was confirmed by both
applied methods. The subthreshold regimen for this model is
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characterized by the Poissonian firing. This is in a complete
agreement with the observed interspike interval data.
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Introduction

Application of mathematical methods in neuroscience is
based on construction of models aiming to mimic real ob-
jects. The models range from phenomenological mathemat-
ical models to very detailed biophysical models. From a
biophysical point of view, the models of a single neuron
reflect the electrical properties of its membrane via elec-
tric circuit description. Such circuit models can be written
in terms of differential equations for the membrane volt-
age. Reducing these models, we can obtain integrate-and-
fire types of model, which are reviewed in detail in most
computational neuroscience monographs (Tuckwell, 1988;
Koch, 1998; Dayan and Abbot, 2001; Gerstner and Kistler,
2002). These models are sometimes criticized for their too
drastic simplification of reality (e.g., Segev, 1992). Simulta-
neously, the opposite opinion appears. For example, Kistler
et al. (1997) claim that the integrate-and-fire model with a
properly selected threshold, after reduction of the Hodgkin-
Huxley four dimensional model, predicts 90 percent of the
spikes correctly. Independently from this discussion, we ob-
serve that the number of papers devoted to the integrate-and-
fire model, or at least employing it, is very high.

The simplest “realistic” neuronal model is the determin-
istic leaky integrate-and-fire model (Lapicque model, RC-
circuit). It assumes that the membrane depolarization can
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be described by a circuit with a generator, a resistor and a
capacitor in parallel. It has to be stressed that while the elec-
trical representation is related to a small isopotential patch of
neuronal membrane, the mathematical variable (the voltage)
reflects an abstract representation of a complete neuron. This
is another simplification based on neglecting the spatial prop-
erties of a neuron. There are attempts to overcome this situ-
ation (e.g., Pinsky and Rinzel, 1994; Rodriguez and Lansky,
2000) but still the single-point models dominate most of the
applications. Due to the simplicity of the deterministic leaky
integrate-and-fire model, the action potential generation is
not an inherent part of the model as in more complex models
and a firing threshold has to be imposed. The model neuron
fires whenever the threshold is reached and then the voltage
is reset to its initial value. This means that in the electrical cir-
cuit representation a switch is added to the circuit. The reset
following the threshold crossing introduces a strong nonlin-
earity into the model. For a constant input the model neu-
ron remains silent, never reaching the threshold (subthresh-
old regimen), or fires at constant intervals (suprathreshold
regimen).

The experimental data recorded from very different neu-
ronal structures and under different experimental conditions
suggest a presence of stochastic variables in neuronal activ-
ity. We may assume that there is a random component, gener-
ally regarded as noise, contained in the incoming signal. The
other source of noise can be the neuron itself where a random
component is added to the signal. Unfortunately, there is no
clear distinction between noise contained in the signal and
the system noise. A phenomenological way how to introduce
stochasticity into the deterministic leaky integrate-and-fire
model is simply by assuming an additional noise term. If
the noise is not further specified, but assumed to be Gaussian
and white, then the model is well known in physical literature
as an Ornstein-Uhlenbeck model (e.g., Gardiner, 1982) and
this model has been widely used in neuroscience literature
(Tuckwell, 1988; Koch, 1998; Dayan and Abbot, 2001; Ger-
stner and Kistler, 2002). An alternative way to end up with
the Ornstein-Uhlenbeck model is by diffusion approximation
of the model with discontinuous trajectories (Stein, 1965).
An advantage of this approach is that a direct interpreta-
tion of the parameters appearing in the Ornstein-Uhlenbeck
neuronal model is available (Lansky, 1997).

Models without specified parameters remain only a tool
for qualitative comparison and thus finding methods for esti-
mation is equally important as model construction. The lack
of methods for parameters identification had been noticed for
a long period (e.g., Tuckwell and Richter, 1978; Brillinger
and Segundo, 1979). In general, the traditional approaches
were more frequently focused on interspike interval (ISI)
distribution. Keat et al. (2001) as well as Paninski et al.
(2004) developed methods based on extracellular recordings

in vivo conditions with known input to the system. Estima-
tion methods from in vitro voltage recordings for known in-
put were presented by Stevens and Zador (1998), Rauch et al.
(2003), Le Camera et al. (2004), Jolivet et al. (2006), Paninski
et al. (2004). None of these papers treats comparison of the
Ornstein-Uhlenbeck model with in vivo spontaneous activ-
ity. The likely reason is that, using the model, only interspike
intervals (ISIs) were usually predicted and thus the attempts
to identify the model parameters were based on observation
of ISIs. Such a task is enormously complicated and leads to
rather difficult numerical and mathematical problems (Inoue
et al., 1995; Shinomoto et al., 1999; Ditlevsen and Lansky,
2005).

We aimed to study the estimation methods in the Ornstein-
Uhlenbeck model, their stability and reproducibility. In the
first Section we summarize the properties of the model. Then
the methods for the estimation of its parameters are given
and details of data acquisition presented. Simultaneously,
the assumptions of the model are tested. Finally the param-
eters of the model are estimated and the obtained results
are discussed. We restricted the study on a single neuron
under spontaneous activity conditions. To extend the results
on several neurons and different experimental conditions is
possible, but beyond the scope of this article.

Model and its properties

The Ornstein-Uhlenbeck model of membrane depolarization
is formally given by the stochastic differential equation,

dX(t)= (−β(X (t) − x0) + µ)dt + σdW(t) , X (0)= x0, (1)

where dW represents increments of a standard stochastic
Wiener process (Brownian motion), and β > 0 characterizes
the spontaneous decay of the membrane depolarization in
the absence of input to the resting level x0. The drift coeffi-
cient µ reflects the local average rate of displacement due to
the neuronal input and local variability is represented by the
infinitesimal variance σ (the variability of the neuronal in-
put). The spikes are not an intrinsic part of the model but are
generated when the membrane depolarization X(t) reaches
for the first time the firing threshold S, which is an additional
parameter. Then, the depolarization is reset to the resting
level, x0, and the process of input “integration” starts anew.
We should keep in mind that also the reset level, x0, repre-
sents an additional parameter of the model. Thus the model
is fully described by Eq. (1) with its five parameters: β, µ, σ ,
S and x0. As said, the ISIs are identified in model (1) with the
first-passage times of the process X(t) across the boundary
S,
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T = inf (t > 0, X (t) ≥ S > x0) . (2)

Due to the complete reset in defining ISI by Eq. (2) and
due to the constant input µ, the ISIs form a renewal process,
which means that ISIs are independent and identically dis-
tributed random variables. Formula (1) can be rewritten in a
form often seen in engineering applications using the term
white noise,

dX(t)

dt
= −β(X (t) − x0 ) + µ + σξ (t) , X (0) = x0 , (3)

with the same interpretation of the parameters as above,
only the white noise ξ (t) is a formal derivative of the Wiener
process with respect to time. For a fixed time t, X(t) given
by (1) or (3) is a Gaussian random variable. In absence of
the threshold S and if σ tends to zero, we can solve the
differential Eq. (3). The solution is identical with the mean
value of the stochastic depolarization given by Eq. (1)

E(X (t)) = x0 + µ

β
(1 − exp(−βt)) (4)

and the variance of X(t) is

Var(X (t)) = σ 2

2β
(1 − exp(−2βt)) . (5)

The position of the asymptotic depolarization E(X( ∞ ))
= x0 + µ/β determines regimes of firing of the Ornstein-
Uhlenbeck model. For µ/β � S − x0, the suprathreshold
regimen, the firing is almost regular and ISI histogram re-
sembles normal distribution. The noise plays a limited role in
this range of parameters. For µ/β ≈ S − x0, the distribution
of ISIs is positively skewed and resembles Gamma distribu-
tion. In the subthreshold regimen, µ/β � S − x0 the firing
becomes Poissonian. Here, the noise plays a crucial role and
without it the neuron would remain silent. This last regimen
is important for this study, as will be seen. Of course, the
signs “ � ” and “ � ” are relative to the asymptotic vari-
ance Var(X( ∞ )) = σ 2/2β. More details on the Ornstein-
Uhlenbeck neuronal model can be found, for example, in
Tuckwell (1988) or in Ricciardi and Lansky (2003).

The description of the process via Eq. (3) is apparently an
intuitive extension of the deterministic approach. Its advan-
tage is in giving a method for a computer simulation of the
process sample trajectories (Kloeden and Platen, 1992). The
simplest discrete-time approximation of (3) is a stochastic
analogue of the Euler scheme for ordinary differential equa-
tions,

Xi+1 = Xi − β(Xi − x0)h + µh + σεi , X0 = x0 , (6)

where h denotes the time step of simulation, Xi (i = 1,2,
. . .) are the simulated values of the process, and εi are in-
dependent and normally distributed random variables, εi ∼
N(0, h). The increments εi in (6) can be replaced by ±√

h
selecting these values with equal probability 1/2 , which
substantially decreases the simulation time (Tuckwell and
Lansky, 1997). This was the procedure applied to simu-
late the membrane depolarization in this study. Apparently,
the parameters β, σ , µ and x0 have to be determined for
the simulation procedure. If the ISIs are to be simulated,
then in addition, the firing threshold S is required. As men-
tioned, the spikes in the model are generated when the mem-
brane depolarization X(t) reaches, for the first time, the fir-
ing threshold S. While the simulation of the trajectories X
contains no systematic bias, it is not true for the simula-
tion of the first passage times (Lansky and Lanska, 1994).
It is systematically overestimated and this effect has to be
minimized.

Two basic types of data can be used for the identification
of the parameters appearing in Eq. (1). In the first of them
only the ISIs are available, which means the realizations of
the random variable defined by Eq. (2). If this is the case, then
the situation is complicated and the solution can be achieved
only under some additional assumptions. For example, it has
to be assumed that the firing threshold and the resting level
are known. In the second situation, which is investigated
here, the membrane depolarization is recorded between the
generation of spikes. To specify the firing threshold and reset
level seems to be a simpler task than to estimate the remaining
parameters of the model. We should simply record what was
the reset after the end of an action potential and what was the
final value of the depolarization when it started. However, we
will see that the situation is not so simple and also these two
parameters need to be estimated. A method of estimating the
remaining parameters was proposed more than two decades
ago (Lansky, 1983). Thus the novelty of this paper is mainly
in application of the method to real intracellular data. For an
extensive methodological review of estimation methods in
stochastic diffusion processes, for which Eq. (1) is a special
case, see Prakasa Rao (1999).

The aim of this article is primarily determination of the
values of the parameters β, σ and µ. The question is whether
these parameters are stable over a long period or whether
they vary in short time ranges. Whereas σ and µ are input
parameters and thus are assumed to change whenever the
input to a neuron has changed, model (1) assumes that β is
a property of the membrane (in the same way as S and the
reset level) and these three intrinsic parameters should be sta-
ble. However, these are only assumptions which have never
been confirmed. Thus, initially we estimate the parameters
separately for each ISI.
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Methods

(a) Estimation from a single interspike interval

The records of the depolarization within single ISI permit
us to estimate β, µ and σ . Theoretically also two additional
parameters S and x0 could be determined, but as we will see,
for that purpose more realizations of the ISIs are necessary.

Let us assume that in one ISI the membrane depolarization
Xi = xi is sampled at N + 1 points (i = 0, . . ., N) at steps
h at times ti = ih (the notation is complicated for non equal
sampling step but the results are analogous). Then the for-
mulas for the estimation of the parameters by the maximum
likelihood method are

β̂ = 1

h

∑N−1
j=0 x2

j − ∑N−1
j=0 x j+1x j + (xN − x0)x

∑N−1
j=0 x2

j + x2 N
, (7)

µ̂ = xN − x0

T
+ β̂ x̄ (8)

and

σ̂ = 1

T

N−1∑

j=0

(x j+1 − x j + x j hβ̂ − hµ̂)2 , (9)

where x = 1
N

∑N
j=0 x j , T = Nh. These formulas are

discrete-time variants of the formulas based on the assump-
tion that the depolarization is continuously recorded in be-
tween the spikes.

Formula (4) suggests that the method of moments can also
be used. Then, we minimize the functional

L(β,µ) =
N∑

j=1

(x j − x0 − µ

β
(1 − exp(−β jh)))2 (10)

with respect to the parameters β and µ by a regression
method. It is obvious that efficiency of this method depends
on the distance of x0 from the asymptotic depolarization
µ/β. An increase of β relatively to h also handicaps the
method.

Another method for estimate of the noise amplitude is

σ̂ ′ = 1

T

N−1∑

j=0

(x j+1 − x j )
2 . (11)

This estimate follows from theoretical results established
by Feigin (1976). Comparing Eqs. (9) and (11), we can see
that for h → 0 in (9) we end up with Eq. (11). We will
compare all these estimation methods.

(b) Estimation from several interspike intervals

In this situation, if we assume that the parameters remain
stable over several ISIs we can use the extension of three
estimates as were formally proposed by Lansky (1983). That
method takes into account the length of ISIs and in some
sense shorter ISIs contribute to the estimates less than longer
ones. Here we use a slightly different approach. We estimate
the parameters for each ISI separately. Then, the global esti-
mates are representative over ISI counts not the total length
of the record. Further, and it is the main reason, in this way
we also get some information about the dependency of the
values on the lengths of ISI and their position in the record.
The global record can be characterized by representative val-
ues of βM , µM and σ M , in our case we use medians (denoted
by index M) of the estimated values.

If several ISIs are available, then in addition to the param-
eters mentioned in the previous Section, also the threshold S
and the reset value x0 can be estimated. For this purpose we
simply use the medians of the values observed for each ISI.

Animal preparation for the intracellular recordings

Guinea pigs served as subjects for the intracellular recording
experiments. Anaesthesia was initially induced with pento-
barbital sodium (Nembutal, Abott, 35 mg/kg, ip) and main-
tained by supplemental doses of the same anaesthetic (about
5–10 mg/kg/hr) during the surgical preparation and record-
ing. Throughout the recording, an electrocorticograph was
monitored to assess the level of anaesthesia. The subject was
mounted in a stereotaxic device following the induction of
anaesthesia. A midline incision was made in the scalp and
a craniotomy was performed to enable vertical access to the
MGB in the right hemisphere (He, 2003; Xiong et al., 2003;
Yu et al., 2004). The head was fixed with two stainless steel
bolts to an extended arm from the stereotaxic frame using
acrylic resin. The left ear was then freed from the ear bar,
so that the subject’s head remained fixed to the stereotaxic
device without movement.

Cerebrospinal fluid was released at the medulla level
through an opening at the back of the neck. The animal was
artificially ventilated. Both sides of the animal’s chest were
opened, and its body was suspended to reduce vibrations of
the brain caused by intra-thoracic pressure. The experimen-
tal procedures were approved by the Animal Subjects Ethics
Sub-Committee of The Hong Kong Polytechnic University.

A glass-pipette as the recording electrode, filling it with
0.5M KCl (pH 7.6, 0.05M Tris HCl buffer) was used. The
resistance of the electrode ranged between 40–90 M . The
electrode was advanced vertically from the top of the brain
by a stepping motor (Narishige, Tokyo, Japan). After the
electrode was lowered to a depth of 4–5 mm, the cortical
exposure was sealed using low-melting temperature paraffin.

Springer



J Comput Neurosci (2006) 21:211–223 215

When the electrode was near or in the target area, it was
slowly advanced at 1 or 2 µm per step.

Data collection

Upon penetrating the membrane of a cell, the electrode de-
tected the negative membrane potential. After amplification,
the membrane potential as well as the auditory stimulus
were stored in the computer with the aid of commercial
software (AxoScope, Axon). The direct current (DC) level
of the recording electrode was frequently checked and set
to zero during the experiments. The DC level after each
recording was used to compensate for the membrane poten-
tial of some neurons. Neurons showing a resting membrane
potential lower than −50 mV and spontaneous spikes (if
any) of larger than 50 mV were included in the present
study. Single neuron data were selected for this article.
The membrane potential was recorded (in 100 mV) with
time step h = 0.00015 [s] = 0.15 [ms], for period 0−501
[s]. Accompanying the values of the membrane potential
is the stimulus level. For the purpose of this study we se-
lected only ISIs which were entirely outside the stimulation
period.

Detection of spikes and determination of S and x0

The parameter estimation method is based on the observation
of the membrane depolarization between spikes. Therefore
the spikes have to be removed from the data but it is not
entirely obvious which part of the records can be included in
the estimation procedure. At first, we detect the spikes and
then we judge their beginnings and their ends. In this way
ISIs are fixed. The least problematic is spike detection. The
level for this purpose was experimentally chosen at the value
of −35.5 [mV] (note that this is not the firing threshold S,
but a value to detect spikes in continuous sampling of the
voltage), see Fig. 1(a).

From visual inspection of the data it is clearly difficult
to decide where exactly to start and to end the spikes, and
hence to decide which data to include in the parameter es-
timation procedure. It follows from this inspection that for
detected spikes the width of the spike as well as the voltage
where ISI starts, are not always the same. This is in con-
trast with the assumptions of model (1). The consequences
are summarized in the Discussion. Determining x0 by the
minimum voltage after detected spike failed due to the large
fluctuations of these values. The final solution, which was
adopted, was that all data were transformed by a moving
average (over 6 values) and the minimum in “the valley”
after a spike is considered to be start of an ISI. This pro-
cedure was confirmed by the following analysis (see next
Section). To find this minimum, at first “the valley” has to be
defined.

Fig. 1 Example of data used for the estimation of the parameters. (a)
The spikes are not initiated at the same values and the end is not uniquely
defined. (b) Schematic illustration of ISI initial point detection (for
details see text). Gray line is the moving average over six observations
given by black line

Its start is fixed at the moment when the depolarization
reaches the value of −65.5 [mV] for the first time after
spike generation. Its end is the time point 0.01005 [s] after
its beginning. In this region the minimum depolarization is
sought for (see Fig. 1(b)).

Defining the end of each ISI was not so problematic and
we took the point 0.01005 [s] before detected spike, i.e., be-
fore the voltage reaches −35.5 [mV]. For threshold determi-
nation, we took the last point with decreasing depolarization
before the spike detection (in other words, the depolarization
only increases to the top of the spike after this point).

Model assumptions—Frequency analysis

When we tried the maximum-likelihood estimates directly
from the raw data we got the results which are illustrated in
Fig. 2 in a typical example.

It obvious that the simulated trajectory differs from the
recorded one in several respects. The former reaches the
steady-state much faster and the amplitude of the noise is
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Fig. 2 Example of membrane potential trajectories, experimental
(gray) and simulated (black) using the parameters estimated by the
maximum likelihood method from the original data

Fig. 3 Example of spectral decomposition of the data

much higher. Further, it seems that the noises is not of the
same type. This suggests that the assumptions of the model
should be checked. The assumptions imply that the spectra
of the data should not contain a dominant frequency (white
noise contains all the frequency components equally). We
performed a spectral decomposition of several parts of the
data and always found dominant frequency at 2180 [Hz].
An example of spectral density obtained from the data is in
Fig. 3. In this example there is also high peak at 1600 [Hz].

The source of this high frequency noise is not clear and to
avoid its influencing the results, all the values of the mem-
brane depolarization were transformed by a moving aver-
age over a time window of six steps. To eliminate this high
frequency noise we tried two strategies (moving averages,
averages over non overlapping time windows). The second
strategy appeared as inferior to the moving averaging. The
success was judged from the fit of the estimates to those
obtained from the regression of the data to an exponential
function (4), see formula (10). In the example, on the inter-

Table 1 Example of dependence of maximum likelihood estimates
on number of steps in moving average procedure

Number of steps Estimate σ Estimate µ Estimate β

1 0.071 1.954 170.80
2 0.038 0.785 62.17
3 0.024 0.454 33.03
4 0.017 0.370 24.90
5 0.014 0.355 23.06
6 0.011 0.343 21.58
7 0.011 0.331 20.53
8 0.009 0.329 20.10
9 0.007 0.317 19.04
10 0.007 0.310 18.59

Fig. 4 Example of membrane potential trajectories, experimental
(light gray), filtered (dark gray) and simulated (black) using the param-
eters estimated from the filtered data. Filtering decreased the amplitude
of the noise and made it similar to that of the simulated signal

val (20.4201–20.54955) [s], statistical regression gives µ =
0.341 [V/s] and β = 21.036 [1/s]. The results of the max-
imum likelihood estimate after computing moving averages
are given in Table 1.

From this table we can see that, the moving average over
about six steps removes the discrepancy. Subsequently we
simulated the model again using the parameters estimated
from the signal after the filtering (see Fig. 4. and compare
with Fig. 3).

It can be seen that the high-frequency noise present in
the experimental data has been removed and appears neither
in the filtered nor simulated trajectory. After the signal was
filtered, the estimates of the parameters for each detected ISI
were calculated according to formulas (7–9). From now on,
by “the data” we mean the filtered original data.

The differences in estimates of σ using formula (9) or
(11) were negligible. For example, on the interval (20.4201,
20.54955); we found σ̂ ′ = 0.0115 [V/

√
s] using (11), and

σ̂ = 0.0114 [V/
√

s] using (9). Therefore for the noise am-
plitude only estimate (9) was used.

Springer



J Comput Neurosci (2006) 21:211–223 217

Fig. 5 Dependency of the sum of the ISIs length on the serial number
of the ISI. The dotted line corresponds to the constant firing rate

Fig. 6 Histogram of ISIs together with the corresponding density of
exponential distribution normalized on the number of ISIs

Results

Parameters of the input and the membrane time constant

Using the above described procedure we identified all ISIs
and estimated the parameters for each of them. In total, 312
ISIs were analyzed and before estimating the parameters of
the model, we applied simple standard statistical procedures
on them. The ISIs appear stable in time (see Fig. 5), which
means that there is no trend in their length.

The corresponding statistical characteristics are median
0.585 [s], average 0.872 [s] and coefficient of variation 0.883.
The shape of histogram of ISIs (Fig. 6) suggests that the ISIs
are generated in accordance with the exponential distribu-
tion. Kolmogorov-Smirnov test does not reject the hypoth-
esis of exponentiality, at 5% a significance level. Also the
other test for normality of the estimates are at 5% significance
level.

The parameters of model (1) were estimated by both meth-
ods for all the ISIs and by using the estimates in schema (6)

Fig. 7 Three curves: gray—data; fluctuating black—simulated model
with parameters estimated by maximum likelihood method from the
data; smooth black—mean value (model without noise). The horizontal
line represents the estimated threshold S

the simulated depolarizations were plotted. An example is in
Fig. 7.

From the simulations made with estimated parameters,
it appears that the estimated asymptotical voltages, µ/β,
coincide well with the data. On the other hand, in the
first part of the trajectories, the real data is a bit faster in
reaching the asymptote than simulated trajectory. This vi-
sual impression was confirmed by the following method
which aimed to check the fit of the model to the data.
For each ISI we have a vector of values of depolarization
xi = (xi0, xi1, . . . , xin) a corresponding vector of depolar-
ization, yi = (yi0, yi1, . . . , yin), obtained from simulating
Eq. (1) by formula (6) using the estimated parameters. The
differences zi = xi − yi were calculated and their averages
and standard deviations evaluated. These results are illus-
trated in Fig. 8 for both estimation methods. The main differ-
ence between the methods is in the period just after the spike
generation. This could be due to a violation of the model
assumptions (for example, hyperpolarization) and possibly
the method of moments could be more robust against this
violation.

Apparently the regression method works better. In both
cases there is a systematic hump after the origin, but for the
regression method it is much smaller.

An important question is dependency of the estimated
parameters on the length of ISIs. The only dependency we
can expect that, if the input to neurons changes with the ex-
periment, then µ could get smaller for longer ISI. Otherwise,
µ and β should keep stable and independent on the length of
ISI. The results are illustrated in Fig. 9. We can see, that the
results obtained by the regression method are independent of
ISI (corr (µ̂, ISI) = 0.016 and corr (β̂, ISI) = 0.136) which
is not the case of the estimates obtained by the maximum
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Fig. 8 Average difference between the data and simulated trajec-
tory. (a) estimates obtained by maximum likelihood (b) estimates ob-
tained by regression method. The region around the curves indicates
± 2 ∗ standard deviations

likelihood method (corr (µ̂, ISI) = 0.663 and
corr (β̂, ISI) = 0.668).

Similarly, we investigated the estimated value of σ and
found it independent of the ISI length, (corr (σ̂ , ISI) =
−0.099). As is apparent from the above analyses, the re-
gression method was superior to the maximum likelihood
method for estimation of µ and β (see Figs. 8 and 9),
so the values from the regression are considered further
on.

In Fig. 10 are presented histograms of estimated values
of the input parameters µ, σ and of the inverse time con-
stant β. We can see that the distributions are rather broad
and quite symmetric resembling Gaussian density. This sug-
gests the asymptotic normality of the estimates which can
be used for future statistical inference. The Kolmogorov-
Smirnov test rejected normality of µ̂ and β̂, but not for σ̂ .
The reason for the rejection in the case of µ̂ and β̂ were
the outliers on the right hand side of the histograms (see
Fig. 10). After their removal the estimates also fit the normal
distribution.

Fig. 9 Dependency of the estimated parameters (vertical axis) on the
length of ISI (horizontal axis). In (Fig.9(a), and (b) are results obtained
by regression method, (Fig.9(c), and (d) those obtained by the maximum
likelihood method

Finally we calculated the central characteristics of the
estimated parameters. Median value of the noise amplitude
was σ̂M = 0.013505 [V/

√
s]. Median values of µ and β were

by regression method, µ̂M = 0.2846 [V/s], β̂M = 25,8042
[1/s], for the maximum likelihood method the obtained val-
ues were µ̂M = 0.4606 [V/s], β̂M = 43,5068 [1/s]. Due to
the symmetry of histograms, the averages and the medi-
ans were practically the same. We should notice that both
methods give almost identical asymptotic depolarization
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Fig. 10 Histograms of the estimated parameters. (a) the drift, (b) the
noise amplitude, (c) the inverse membrane time constant

µ/β, for regression 0.0110 [V] and for maximum likelihood
0.0106 [V]. We can calculate the membrane time constant,
which from the regression method yields after inverting the
estimate of β, the value of 38.8 ms.

Reset, threshold and asymptotic depolarization

For each ISI we estimated the initial value of the depolar-
ization after a spike and the firing threshold (the last value
before the spike is generated), Fig. 11.

We see from comparison of Fig. 11(a) and (b) that the
initial values were more variable than the thresholds S. The
reason may be that the spike was not in principle generated
at the time when the voltage was at its highest level during
the ISI and this will be discussed later. The median value
of the initial depolarization is x0 = −73.92 [mV]. The
median threshold value is S = −61.0 [mV]. It implies that,
in average, the firing threshold is about 13 [mV] above the
initial depolarization. It is larger than approximately 11 [mV]
which is the level of asymptotic depolarization as it comes

Fig. 11 Histograms of the membrane parameters. (a) initial membrane
depolarization, (b) firing threshold depolarization

out from the parameters estimation. The normality of both
determined parameters, x0 and S, was rejected.

To illustrate the relationship between the firing threshold
and the asymptotic depolarization we compare Fig. 12 and
Fig. 11(b). Namely we can see that the estimated parameters
predict subthreshold firing type, as from Fig. 12 we can see
that the asymptotic depolarization is below the threshold
even with respect to its variation.

Finally, to show that the neuron, as the estimation of the
parameters suggests, is in the subthreshold (noise-driven)
regimen, we compare directly the theoretical asymptotic de-
polarization and the corresponding firing threshold (Fig. 13).
We can see that the difference between the threshold and
the asymptotic depolarization is almost always positive
(Fig. 13(a)). If we investigate some kind of two-standard-
deviations envelope around the asymptotic depolarization,
then we get below zero (Fig. 13(b)). The possible reasons
for this result are presented in Discussion.

Discussion

This is mostly a methodological attempt to estimate the pa-
rameters of the Ornstein-Uhlenbeck neuronal model from
the intracellular recordings and for an unknown input. We
have to realize that only a single neuron in a single record was
analyzed and thus the results are more a methodological il-
lustration of how to deal with the problem than a statistically
complete analysis.
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Fig. 12 Histograms of the asymptotic properties calculated from the
parameter estimates. (a) asymptotic depolarization, (b) asymptotic stan-
dard deviation of the depolarization

Fig. 13 Histogram of the pair wise differences between the es-
timated firing thresholds and the asymptotic depolarizations. (a)
Ŝ − (x̂0 + µ̂/β̂), (b) Ŝ − (x̂0 + µ̂/β̂) − 2σ/

√
2β

Spontaneous activity

We selected for statistical treatment only the unstimulated
activity of the neuron. The detected ISIs are exponentially
distributed which suggests that they are generated in ac-
cordance with a Poisson process. The Poisson process as a
model of spontaneous activity of a neuron was experimen-

tally observed many times and on very different neuronal
structures (e.g., Eggermont et al., 1993; Jones and Jones,
2000; Lin and Chen, 2000; Tateno et al., 2002). In sensory
neurons, we showed in frogs (Rospars et al., 1994) and rats
(Duchamp-Viret et al., 2005) that the spontaneous activity
of olfactory receptor neurons can be described by a Poisson
process. Theoretical arguments for the fact that the sponta-
neous activity is a low rate Poisson process can be found
in Laughlin (2001). The spontaneous activity can be inter-
preted as the summation of two processes: (i) an intrinsic
process which implies firing due to the noise, and (ii) an ex-
trinsic process, which induces firing due to the uncontrolled
occurrence of effects either from the environment or other
neurons. Of course, Poisson process, as any other model, is
an approximation which can be always questioned (Koyama
and Shinomoto, 2005), in this case for example by the exis-
tence of the absolute refractory period, but such objections
are marginal at this level of description.

From the point of view of the Ornstein-Uhlenbeck neu-
ronal model, the Poisson process corresponds to the situation
in which the signal is so weak that the asymptotic depolar-
ization is far below the firing threshold, which has to be true
with respect to the amplitude of noise. In other words, for
model (1) and (2) this type of activity is predicted if the firing
threshold S is far above the asymptotic depolarization, µ/β,
given by Eq. (4) with respect the asymptotic variance (5),
which is controlled by σ . We can see from Fig. 13(a), that the
asymptotic depolarization is below the threshold. However,
when we plot the asymptotic depolarization increased for two
asymptotic standard deviations, we get above the threshold.
This could break the exponentiality of ISIs distribution ob-
served in our data. The reason why this has not happened may
be that not every crossing of the voltage has induced a spike,
in other words, that we had not recorded exactly the trigger
zone depolarization. Namely, two-compartment version of
the model would be closer to reality. Similar conclusion can
be found in Jolivet et al. (2006).

Model assumptions

There are many assumptions of the model which are dis-
putable and can be true only in idealization. First of all, it
is the constancy of the input parameters µ and σ over each
ISI. We selected the spontaneous activity as an experimen-
tal material, for which such a constancy can be expected.
Another assumption is the Gaussian white noise on the neu-
ronal input. This we found was not true for our data and
the high-frequency noise was detected and eliminated. The
source of this high frequency noise remains unclear to us.
Next assumption, violated in our observations, was the first-
passage time inducing the generation of a spike. Probably,
we registered the membrane depolarization in other location
than the spikes are generated. The traditional assumption of
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the model is the fixed value of the reset depolarization (for
the variants with random initial value see Lansky and Smith,
1989; Christodoulou and Bugmann, 2000). This assumption
represents an oversimplification which was noticed as early
as by Stevens (1964). We found that this assumption was also
violated, but for the model performance the effect is negligi-
ble. Despite that any assumption of the model can be made
questionable, as it is only a model, we may conclude that the
data are consistent with the model. This was not the case in
Stevens and Zador (1998) where model (1–2) in absence of
noise was fitted to response of cortical neurons in vitro to
injection of constant current. There the voltage approached
the threshold as a concave curve, in contrast to Eq. (4), and
our data. The authors of the paper solved the discrepancy
by employing time-varying membrane resistance and time-
varying membrane time “constant”. In contrast to Stevens
and Zador (1998), here the investigated trajectories shown
the convex shapes, but it may happen that when a neuron is
stimulated, this property is met.

Intrinsic parameters

Tuckwell and Richter (1978), who pioneered the estimation
of the parameters in the stochastic neuronal models, clas-
sified the model parameters into two classes—intrinsic and
input. Unfortunately, their results are based on different as-
sumptions and thus not comparable with ours. In model (1–2)
are three intrinsic parameters, β, S and x0, and for different
neurons have been reported different values of them, even
without modeling concept. However, the intrinsic parame-
ters were not in the center of our interest despite they play
their important role for the model performance. Jolivet et al.
(2006) analyzed spike response model which was claimed to
be equivalent to the leaky integrate-and-fire model. However,
their approach is not oriented on estimating the parameters
µ and σ , but it is aimed on spike train prediction. The time-
dependent threshold is considered in their paper, but the
constant value is achieved in about 10 ms, which would not
change our results as no ISI shorter of 10 ms was observed. In
their Fig. 1(a) we can see, that the threshold reaches the value
between −60 and −70 mV which corresponds to our results.
In general, the values of intrinsic parameters obtained in this
article are consistent with the values found in literature.

Input parameters

Completely different situation comes with the input param-
eters. The attempts to estimate them were up to now rare
and based on additional assumptions. Inoue et al. (1995) an-
alyzed spontaneous activity of the mesencephalic reticular
formation neurons on the basis of ISIs. It should be noted
that the term spontaneous activity has in central neurons dif-
ferent meaning than in the sensory systems. In the case of

neurons investigated by Inoue et al. (1995) there were ei-
ther in sleeping animals or in bird watching state, but there
is no apparent difference in the activity or the parameters.
We should keep in mind that the firing rates were higher
than in our case and none of the neurons resembled Pois-
sonian firing. There the firing threshold and the membrane
time constants were selected a priory, S was set 15 [mV]
above the reset value and the time constant was taken equal
to 5 [ms]. The threshold obtained in this study (approx. 13
[mV]) is not so different from the value assumed by these
authors. On the other hand, the membrane time constant we
estimated was about seven times larger than that used by
them. This fact corresponds well to the fact that our values
of the drift parameter were estimated lower than in the cited
paper. The estimated µ ranges in their paper from −6 to
3 [mV/ms], whereas in this study we obtained the values
in much smaller range, around 0.28 [mV/ms]. Finally, the
most striking at the first sight seems to be the difference
in the amplitude of noise, which usually was found much
larger than in this paper. However, it is indirectly clear that
the values in Inoue et al. (1995) are in different units than
in this paper ([mV/ms]). After rescaling, the values the dif-
ference becomes less apparent. It is an open question if the
comparison of our results with Inoue et al. (1995) can be con-
sidered as a discrepancy, or if their results are so widespread
that ours can be seen included in theirs. A possible source
of discrepancy between these two papers is probably dif-
ference in applied method and the overall activity of the
neurons.

Another attempt to compare the Ornstein-Uhlenbeck
model with ISI data was done by Shinomoto et al. (1999)
with a negative result. Their method is not based on direct es-
timation of the model parameters but on studying mutual re-
lationship between coefficient of variation and the skewness
coefficient. They concluded that the model is not adequate
to account for the spiking in cortical neurons. These authors
did not estimate the membrane time constant and considered
for it several optional values. This complicates the compar-
ison of their results with ours. However, they claimed that
the reason for inconsitency of their data with the Ornstein-
Uhlenbeck process was mainly due to anomalous long ISIs.
In our case the parameters were found in the subthreshold
region and thus the long ISIs represent no problem for the
fit of the data to the model. On the other hand, in the case of
the stimulated activity such a situation can arise.

Both these attempts (Inoue et al., 1995; Shinomoto et al.,
1999) were based on ISIs statistics. It means that for estima-
tion of the parameters a sample of several hundreds of ISIs is
necessary. Our method permits to estimate the input parame-
ters in a short time window (in a single ISI). It appeared that
the regression method was superior to the maximum like-
lihood. There might be several reasons for this effect. The
first one can be the above mentioned violation of the model
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assumptions and thus that the maximum-likelihood may be
more sensitive to these discrepancies between the model and
the data. The second reason is that the maximum likelihood
estimates are discretized version of continuous sampling the-
ory. The asymptotic depolarization µ/β was estimated very
well by both methods, better than the parameters µ and β

separately. The reason is that the membrane potential was
almost permanently at the asymptotic level and in this situ-
ation the estimation of individual parameters is less precise
(Lansky et al., 1988). The distinction on input and intrin-
sic parameters fails for more realistic leaky integrate-and-
fire models (e.g., Lansky and Lanska, 1987; Richardson and
Gerstner, 2005). There the membrane time constant becomes
input dependent. The change is only formal at the level of
description applied in this article.

Noise

The results suggest that our neuron was firing in the noise
activated regimen, in other words, that in the absence of the
noise it would remain silent. This corresponds very well to
the fact that the driving signal is small and the neuron fires
only due to the stochastic fluctuation of the membrane de-
polarization. Theoretical prediction of the Poissonian firing
in the subthreshold regime of the Ornstein-Uhlenbeck neu-
ronal model is well known for a long time (Nobile et al.,
1985) and here the prediction and data estimation fits per-
fectly together. The values of the estimated noise amplitude
(Fig. 10(b)) seems to be quite small, but this is only an illu-
sion as what has to be considered comes out of Eq. (6), and
it is the asymptotic standard deviation of the depolarization,
σ
√

2β.

Conclusions

We estimated the parameters of the Ornstein-Uhlenbeck neu-
ronal model in spontaneous neuronal activity. The achieved
results are consistent with the conclusions which can be ob-
tained from the statistical analysis of the ISIs. The neuron
fires in subthreshold regimen and thus the activity is Poisso-
nian. The advantage of the applied method is that it permits
to judge quantitatively the input to the neuron within a single
ISI. This property will appear more important in presence of
stimulation and comparison of neuronal activity under dif-
ferent conditions.
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