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Abstract. Objective: To evaluate the consequences for antibiotic efficacy of different types of 

poor  adherence  to  a  short-term dosing regimen.  Ciprofloxacin  was  taken  as  an  example. 

Method. A simulation study on a two-compartment pharmacokinetic  model  and parameter 

estimates taken from the literature was performed. Two empirical efficacy measures as well 

as a specific pharmacodynamic model of the bacterial kill curve were used. Four patterns of 

non-adherence were investigated; dosage omission, irregular dosing intervals, delayed dosing 

and treatment discontinuation.  Results: Errors in timing of doses with a standard deviation 

less than 2 hours had a minor effect on antibiotic efficacy. Dosage omission, in contrast, has a 

significant influence on the antibacterial effect of ciprofloxacin. Conclusions: Non-adherence 

patterns are difficult to measure experimentally, thus recommended dosing regimens should 

be sufficiently robust against most of the non-intentional disturbances. 
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INTRODUCTION

Poor adherence (compliance) to oral medication regimen is generally considered to be a major 

factor in the efficacy of antimicrobial therapy in ambulatory patients [Brixner 2005, Vrijens 

and Urquhart,  2005,  Kardas  2002,  Lipsitch  and Levin  1997].  While  the  consequences  of 

extreme non-adherence are readily apparent (e.g., omission of several doses), this does not 

hold for lesser degrees of poor adherence, as an inappropriate timing of doses. Thus, using a 

simulation approach, the aim of the present study is to reveal the relationship between various 

patterns of non-adherence and therapeutic efficacy of ciprofloxacin as an example. There is a 

lack of data on non-adherence patterns and thus we employ a wide range of different ones to 

show the possible effects. 

Using stochastic models for drug administration, the computer simulations were based on the 

pharmacokinetics  of  ciprofloxacin  in  patients  [Payen  et  al.  2003]  and  several 

pharmacodynamic  measures  [Corvaisier  et  al.  1998,  MacGowan  et  al.  2000]  and models 

[Regoes  et  al.  2004]  of  antibiotic  effectiveness.  Simulations  were performed  for  multiple 

dosing,  250 mg every 12 hours, of  orally applied ciprofloxacin over ten days.  Finally,  we 

compared some of the results with those obtained for an alternative dosing schedule of 500 

mg every 24 hours. Since our aim was to demonstrate the effect of non-adherence, for clarity 

we  neglected  the  influence  of  variability  in  pharmacokinetic  parameters  and  therapeutic 

concentration range within the population. 
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MATERIALS AND METHODS

Pharmacokinetic model.  Simulations were performed for the two-compartment disposition 

model with first order absorption used by [Payen et al. 2003]. Assuming a bioavailability of F 

= 0.85 [Payen et  al.  2003], and an absorption rate constant of  ka = 0.6 h-1,  the following 

parameter  values  were  calculated  from  the  pharmacokinetic  parameters  estimated  by 

[Meagher et al. 2004], for the 250 mg dose of ciprofloxacin: volume V = 55.765 liters, first-

order elimination constant  k2o = 1.333 h-1, intercompartmental rate constants  k23 = 1.262 h-1 

and  k32 = 0.311 h-1. Using these parameters, plasma concentration-time curves,  )(tC , were 

simulated over 10 days assuming dosage schedules of 250 mg every 12 hours or 500 mg 

every 24 hours, respectively.  Note that for a chronic administration of 500 mg/day,  which 

implies  a  constant-rate  infusion,  the  constant  steady-state  plasma  concentration  is  0.24 

mg/liter. However, due to large fluctuations in )(tC , if the application is in regular intervals, 

the value of constant  plasma concentration gives no direct information on the efficacy of 

ciprofloxacin  dosing  regimen.  No  diurnal  variation  in  absorption  or  elimination 

pharmacokinetics was considered. The infectivity of pathogens is assumed to remain constant 

over time.

Pharmacodynamic  models.  Various  empirical  pharmacodynamic  measures  proposed  to 

evaluate the effectiveness antibiotic therapy on the basis of minimum inhibitory concentration 

(MIC)  have been discussed  with regard to  their  usefulness  in  optimizing  fluoroquinolone 

dosing regimens [MacGowan et al. 2000]. Most of them are based on the concept of a MIC. 

For our simulation of ciprofloxacin concentration-time curves, MIC of 0.03 mg/l [Regoes et 

al.  2004],  was considered.  Among these measures  are:  (a)  the time for which the plasma 

concentrations remain above MIC (t   MIC) and (b) the area under the )(tC  curve (AUC) 

above MIC (AUC  MIC). Accordingly, we used the following complementary measures for 

the assessment of the effect of non-adherence on drug exposure:

a) t   MIC, the total time )(tC  spent below MIC. 

b) AUC  MIC, the total area between MIC and the concentration curve being below it. The 

complementary measure AUC  MIC was used for example by [Corvaisier et al. 1998] when 

comparing different antimicrobial pharmacodynamic indices. While the area above MIC may 

reflect the positive effect of the antibiotic, the area below MIC is related to the lack of the 

effect. An obvious advantage of this measure over the measure t  MIC is that AUC  MIC 

reflects how deep the plasma concentration dwells under MIC. In this sense the measure is 
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closer to the simulated bacterial population (see below) which reacts gradually on the level of 

)(tC . Due to the fact that this measure is not commonly used, we illustrate its behavior. 

Since the relationship between antibiotic concentration-time curve and effect is more complex 

than expressed by the above parameters,  we also simulated the effect of treatment  on the 

bacterial  population,  using  the  pharmacodynamic  model  [Wiuff  et  al.  2005].  The  model 

assumes that the bacterial cells exist in two physiological states, sensitive and resistant, with 

densities XS and XT. When a new bacterial cell arises, the probability, f, that it will be resistant 

is independent of the state of the cell from which it came. In accordance with this model the 

mortality rate of the sensitive population, μ, is 
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where constants S
minΨ  = 6.5 h-1,  S

maxΨ  = 0.88 h-1 and zMIC = 0.017 mg/liter were taken from 

[Regoes  et  al.  2004].  The constant  zMIC determines  the  concentration  for  which  the  net 

change of the bacterial concentration is zero.  Function μ is in dependency on the antibiotic 

concentration of sigmoidal shape, constant S
maxΨ  determines the maximum growth rate of the 

bacterial population (in absence of the drug). On the other hand, constant  S
minΨ reflects the 

death rate due to the saturation of the antibiotic concentration. The range for SS
minmax Ψ−Ψ  is 

wider than is likely to be the case in vivo, and thus all reasonable cases are encompassed in 

the model. Function (1) is in  [Regoes et al. 2004] given in the form of a Hill function. It 

means that an additional parameter determines the slope of the sigmoid. Importance of the 

Hill  coefficient  for  does  adjustment  is  considered  as  an  important  issue  [Czock  2006], 

however, [Regoes et al. 2004] reported the value of Hill coefficient for ciprofloxacin being 

equal to one. Thus the following equations are valid only for the case that the Hill coefficient 

is equal to one.

Then, the model for the density, X= XS + XT, of a bacterial population under treatment is given 

by differential equations 

( ) )()()()()1(
)(

maxmax tXttXtXf
dt

tdX STTSS
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(2)
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where )0(X  = 106 was taken, [Regoes et al. 2004] and it was proportionally with respect to f 

divided  between  sensitive  and  resistant  population.  Obviously,  the  sensitive  population 

decreases or increases in dependency on the value of the function μ(t) given by equation (1) 

and  the  constant  zMIC may  also  reflect  the  innate  killing  rate.  The  resistant  population 

following model (3) only increases, unless an innate capability to contribute to bacterial kill is 

included.  For the sake of comparison with [Wiuff et  al.  2005], we have not included the 

spontaneous bacterial  kill,  except  in one case to illustrate  its  effect.  The size of bacterial 

population  was calculated  numerically  by using equations  (2)  and (3) from the simulated 

concentration-time curve )(tC . The constant f=0, unless stated otherwise.

Non-adherence models.  Poor adherence is  a very  complex phenomenon in its causes and 

manifestation.  Nevertheless,  some  reliable  data  on  adherence  are  quite  rare.  Normal 

spontaneous behavior of a patient is changed by application of an electronic device to monitor 

dosing assessment. On the other hand, patient diary or retrospective questionnaires are not 

very reliable way to judge real non-adherence patterns. 

We selected the following models of dose taking and dose timing, which may shed light on 

some of the underlying behaviors. Of course, as any models, also these considered here, are 

idealization of reality. Detailed description of stochastic non-adherence models can be found 

in [Wang and Ouyang 1998].

a) Dosage omission. Dosage omission is the most common cause of poor adherence [Kardas 

2002].  At  each  occasion  when  the  dose  should  be  administered  it  is  skipped  with  fixed 

probability p. It means that in each cycle there is a probability p to forget to take the dose and 

with probability p−1  the dose is taken. Then, the distribution of the time for the next dose is 

,,))1(()1()(
0

∆>∆+−−= ∑
∞

=

titpptg
i

iδ (4)

where δ(.) is the Dirac delta function, and Δ the exact dosing interval. This model of non-

adherence resulting in the geometric distribution was successfully fitted in [Wong et al. 2003] 

to pill-count data. Equation (4) for 0=p  defines so called Dirac comb.

b) Irregular dosing intervals. Here it is assumed that the time instant, Sk, of k-th dose is 
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kk kS ε+∆= ,         (5) 

where,  as  previously,  Δ is  the  exact  dosing  interval  and kε is  the  error.  The time  interval 

between two consecutive doses in model (5) is equal to Δ “corrected” by the difference of two 

dosing errors, kkkkk SST εε −+∆=−= ++ 11 . We slightly simplify model (5), which originally 

results in pair-wise dependent inter-dose intervals, and we assume that Tk are independent and 

identically  distributed  random  variables.  In  our  simulation  this  is  done  by  proposing  a 

probability  distribution  of  the random time,  T,  between two consecutive  doses.  Thus,  the 

correlation  structure  of  model  (5)  is  neglected  assuming  that  two  errors  in  timing  are 

separated  at  least  by  one  correctly  taken  dose.  The  occasion  when  the  last  dose  was 

administered is taken as “time zero”. 

For T we selected a distribution which is asymmetrical and centered around Δ, which is the 

length of regular dosing interval. We imposed the condition E(T)= Δ, it is, that the mean inter-

dose interval is equal to the regular dosing interval and intervals shorter than Δ may appear. It 

means that the dose is taken in advance. The Gamma distribution with parameters a and b

a

a

ba

btt
tg

)(

)/exp(
)(

1

Γ
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−

,        (6) 

where )(/)( 2 TVarTEa = , )(/)( TETVarb = was applied, ∫
∞

− −=Γ
0

1 )exp()( tta a
 is the gamma 

function, see e.g. [Tuckwell 1995].As said before, we use E(T) = 12 h, and for small Var(T), 

the shape of the distribution is close to Gaussian. Under this scenario the patient often takes 

the drug before the scheduled interval but with small  deviations. On the other hand if the 

administration is delayed then the delay is relatively large. 

c) Delayed dosing.  This is  probably most common type  of poor adherence to timing of 

doses. It is a special case of model (5) in which the error can be only in a positive direction,  

0>kε . We selected the exponential distribution as a simple example of delay in taking the 

drug 

∆>∆−−= tttg ),/)(exp(
1

)( µ
µ (7)

This means that after the scheduled time of the dose application at time Δ the dose is taken 

completely randomly with the mean delay μ. 
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d)  Discontinuation  of  the  treatment.  This  is  a  common  type  of  poor  adherence  to 

antibiotics. Simply, in some moment, usually close to the end of the treatment, the remaing 

doses are skipped. In this sense, the model is a special case of “dosage omission” with p=1 for 

a given time. In contrast with remaining non-adherence patterns, this one is, most probably, 

intentional. The effect is straightforward and shown only on the size of bacterial population.

The investigated types of noncompliance are illustrated in Figure 1.

Figure 1. Schematic representation of the regular dosing and investigated types on non-compliance, where ticks  
denote dosing instants, the crosses denote the current dose time which is delivered with four types of error.  
Upper  line  shows regular  dosing,  (a)  omission  of  a  dose,  (b)  irregular  dosing,  (c)  delayed  dosing  and  (d) 
discontinuation of the treatment. 

 

Numerical  simulations. The  differential  equations  describing  the  pharmacokinetic  model 

were solved numerically.  Monte-Carlo methods were used to generate irregular  inter-dose 

intervals. One thousand of treatments were simulated for each selected set of parameters and 

then were statistically evaluated. Unless stated otherwise, simulations were made for a dosing 

regimen of 250 mg ciprofloxacin every 12 hours over 10 days. 

 

RESULTS

Figure 2. shows three examples of concentration-time curves of ciprofloxacin simulated over 

96 hours following start of multiple dosing (250 mg/12 h) for regular dosing and two types of 

poor adherence, namely, irregular dosing and dosage omission. Due to the short half life, the 

steady state is reached very quickly. This authorizes our assumption that the dosing errors are 
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mutually independent. It is apparent from Figure 2. that not only the maximal value of the 

plasma concentration, but also its minimal value, under regular dosing are far above MIC. If 

the doses would be lower, these extreme values of plasma concentration would decrease and 

the effects of  non-adherence would be more expressive.

Figure  2.  Examples  of  simulated  plasma  concentration-time  curves  in  96  hours  window  following  dosing 

250mg/12h  for  different  patterns  of  non-adherence:  regular  dosing,  omission  (p=0.1)  and  irregular dosing 

(vertical bars denote instants of regular doses and were randomized by using Gamma distribution with mean 

equal to 12 hours and standard deviation (SD) equal to 2  hours).  MIC level is indicated.  In  example with 

omission )(tC  gets below MIC, it does not happen if the dose is only delayed.

Dosage  omission. Dosage  omission,  in  contrast  to irregular dosing, generally  leads  to  a 

decrease of )(tC  below MIC (Figure 2). In other words, it is omitting a dose, rather than even 
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badly mis-timing an unmissed dose to the extent of 8 - 16 h interval that actually challenges 

the  MIC.  Note  that  for  omission  of  one dose,  the  measure  t  MIC takes  value  7.24  h. 

Measuring the area between MIC and the concentration curve, AUC  MIC, we obtain for 

such a single omission the value 0.85 h ∗ mg/liter. Unfortunately,  what is the effect on the 

treatment efficacy remains another question. 

If the probability of a single omission is  p  and the omissions are independent events, then 

probability that during the cure the concentration does not drop below MIC is np)1( − , where 

n is  the total  number  of doses.  For small  probability of omission (p   0.02),  this  can be 

linearly approximated by 1 - pn, as demonstrated in Figure 3.

Figure 3. Probability that dosing over 10 days does not lead  )(tC  values below MIC in dependency on the 

probability of omission of a single dose. The lower line is the linear approximation of this probability.

As shown in Figure 3. even a very small probability of omission ( 005.0≈p ) implies that 

)(tC  drops at least once in ten cases (treatments) below MIC.

Irregular dosing intervals. Figure 4. shows the histograms of the measures  t   MIC and 

AUC  MIC for 10 days treatment and dosing error (deviation from regular dosing) that was 

characterized by a standard deviation 2 h (cf. Eq. 6, a=36, b=1/3). In more than 75% of cases 

the concentration does not drop below MIC for such a small variation of the timing. It can be 

seen that while the histogram of  t   MIC decreases gradually, for AUC  MIC most of the 

cases are concentrated in the first bin. 
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Figure 4.  Histograms of measures (a)  t  MIC and (b) AUC   MIC obtained for Gamma distribution with 

E(T)=12, Var(T)=4.  From the simulation of 1000 runs, 761 of them never got below MIC and were excluded 

from the histograms.

 

As expected t  MIC increases with variability of dose-timing. In Figure 5. are shown results 

of 1000 simulation runs for each fixed standard deviation of the dosing error σ. The situation 

at σ=2 corresponds to that illustrated in Figure 4., but there only the cases in which  )(tC  

drops under MIC are taken into account. This explains why in Figure 5. the mean time spent 

under MIC is almost zero.   

 

Figure 5. Dependency of measure t  MIC on the standard deviation of dose-timing (dosing error) for irregular 

dosing: the mean (lower curve), mean   standard deviation (upper curve). For each value of σ, with step 0.01, 

1000 simulation runs were performed and the mean and its standard deviations were calculated. 

It  is  obvious  from  Figure  5.  that  for  errors  in  timing  of  doses  with  SD   1.5  h,  the 

concentration  practically  never  drops  below MIC. Increasing  this  variability,  the  measure 

starts  to grow but rather  slowly,  however,  the standard deviation grows more steeply.  Of 
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course, the mean curve decreased by the standard deviation gets below zero. It only proves 

that the distribution of measure t  MIC is not symmetrical around zero (see Figure 4.).

Delayed dosing.  If the delay is shorter than 4.76 h, the concentration does not drop under 

MIC. This is a direct consequence of the fact that the time under the MIC for omission of one 

dose is 7.24 h. Thus the probability that the concentration decreases below MIC is equal to 

probability to get a realization of the exponential random variable larger then 4.76, which is 

equal to )/76.4exp( µ− , where μ is the mean delay time. This is illustrated in Figure 6., where 

the probability that )(tC  drops below MIC is plotted as a function of the mean delay time. It 

is  apparent  from the  figure  that  if  the  mean  delay  is  below one hour  this  probability  is 

negligibly small. From this point it starts to grow almost linearly reaching the value 0.2 at the 

mean delay 3 [h].

Figure 6. Dependency of probability that )(tC  drops below MIC on the mean delay time.

Analogously to Figure 4., the histograms of the measures  t  MIC and AUC  MIC for 10 

days dosing assuming an exponentially distributed delay in dosing (Eq. 7) with mean delay 

time 3 h are depicted in Figure 7.
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Figure 7. Histograms of (a) t  MIC and (b) AUC  MIC obtained for exponentially distributed delay in dosing 

(mean delay time 3 hours).  From the simulated 1000 runs 16 of them never got below MIC and were excluded 

from the histograms. 

The mean delay is quantity about which we can only speculate and it is of primary interest to 

see how it influences the plasma concentration of the drug. Figure 8. shows the dependency of 

the mean of  t < MIC and its standard deviation on the mean for exponentially distributed 

delay times.

 

Figure 8. Dependency of measure t  MIC on the mean delay time for exponentially delayed dosing: the mean 

(lower curve), mean   standard deviation (upper curve). For each value of mean delay, with step 0.01, 1000 

simulation runs were performed and the mean and its standard deviations were calculated. 

Bacterial population.  Up to now we have investigated the effect of non-adherence on the 

simple pharmacodynamic measures introduced above. Now, we turn our attention directly to 

the effect on the bacterial population. Before that, let us illustrate (Figure 9.) the behavior of 

the model in dependency on different values of proportion between resistant and sensitive 

population. The decrease in bacterial density during the time course of therapy as simulated 

using the pharmacodynamic model of [Wiuff 2005] (Eqs.1-3) with innate killing rate is also 

presented. The model is constructed in such a way that without the innate killing the size of 

the resistant bacterial population cannot decrease. However, for comparison with the original 

paper, the innate killing rate is neglected in further analyses, but can be easily included. 
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Figure 9. Decrease (left panel) in bacterial density during ciprofloxacin therapy 250mg/12h for regular dosing. 

Corresponding values of f are given in the picture. In the right panel is illustrated the effect innate capability to 

contribute  to  bacterial  kill  (f=0.0001,  innate  killing rate  mT=0.01 [1/hour]).  The monotonic curve  gives  the 

density of resistant population and the saw-like curve depicts the density of sensitive bacterial population.

The model  of bacterial  population is  characterized  by high robustness against  small  non-

adherence to the dosing schedule. This has been verified by several simulation runs in which 

the irregular dosing was applied and which are not illustrated. Thus using the model, we study 

only the effect of dose omission. The bacterial density of the population is given in Figure 10. 

for  relatively  high  probability  of  the  dose  omission,  p=0.25.  Thus  there  appeared  three 

omissions  of  a  single  dose,  but  also  one  omission  of  two consecutive  doses.  It  shows a 

surprising effect that a single dose omission is very rapidly “forgiven” and the system returns 

to the steady-state corresponding to the regular dosing. On the other hand, if two consecutive 

doses are missed, the bacterial density never reaches the original level. This, of course, may 

have a substantial effect on the whole therapy. Of course, we have to remind that the result 

strongly depends on the choice of the parameters.

 

Figure 10. Bacterial density during ciprofloxacin therapy for omission of a dose. Dosage omissions probability 

p=0.25,  f=0.0001, dosage 250mg/12h. The monotonic curve gives the density of resistant population and the 

saw-like curve depicts the density of sensitive bacterial population.  
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Different dosing schedule. All the above results are for  250 mg/12 h dosing. Now let us 

compare these predictions with those obtained for 500 mg/24 h dosing schedule. Although in 

the latter case, the plasma concentration drops slightly below MIC for approximately 3 hours 

even for regular dosing (Figure 11.), it is open to question whether this significantly affects 

antibiotic efficacy. 

Figure  11.  Plasma  concentration-time  curve  in  50  hours  window  following  dosing  500mg/24h  in  regular 

intervals, MIC level is indicated. Decrease of )(tC  below MIC is apparent. 

More importantly, the bacterial density seems to behave quite similarly in 500mg/24h as in 

250mg/12h  schedule,  see  Figure  12.  It  is  partly  in  contrast  with  previous  measures,  for 

example t  MIC. We can see that the minimal density of bacterial population in 500mg/24h 

is only slightly below the minima for 250mg/h schedule. Taking into account the fact that, 

when applied only once a day, the probability of non-adherence is lower, we could conclude 

that under once a day administration the cure is less influenced by the irregularities, especially 

omissions, in dosing. This is in a complete agreement with [Sanchez-Navaro et al. 2002b]. 
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Figure 12. Bacterial  density during ciprofloxacin therapy for  500 mg/24 h regular  dosing (higher maxima),  

regular dosing 250mg/12h (lower maxima), discontinuation of the treatment at time 100 is illustrated. Parameters 

are the same as in Fig. 9. 

Discontinuation of the antibiotic  therapy is a common error and often it  has substantially 

negative effect. In Figure 12 is shown trajectory of bacterial density for the last dose taken in 

the middle of the treatment.  At least under this model assumption,  it leads to exponential 

growth of the bacterial population. The population starts to grow with the rates  S
maxΨ  and 

T
maxΨ  which are quite high.

DISCUSSION AND CONCLUSIONS

In this study, computer simulations were applied to determine the effects of various patterns 

of non-adherence on the exposure-response relationship for ciprofloxacin. We are well aware 

that the approximate models used to describe partial adherence are oversimplifications of a 

complex phenomenon, however, this is the basic property of models. Nevertheless, we believe 

that the simulations may add to our understanding of the consequences of different types of 

non-adherence on the efficacy of antibiotic therapy, with ciprofloxacin taken as an example. 

The validity of the underlying pharmacodynamic measures  t > MIC and AUC > MIC  has 

been  discussed  previously  [Corvaisier  et  al.  1998,  MacGowan  et  al.  2000]:  while  these 

measures correlate with the antibacterial effect (whereby AUC > MIC was the best predictor), 

they provide only indirect information on the consequences of poor adherence and reflect 

only  partly  the  effect  of  changes  in  time  course  of  plasma concentration.  A more  direct 

answer is provided by the bacterial kill curves simulated for different types of non-adherence 

using response the model developed in [Wiuff et al. 2005]. Here, it has to be stressed again 

that it is an approximation because the killing rate given by equation (1) would not be static 

but in reality it would depend on the length of exposure of the bacterial population to the 

antibiotic. At least the probability f of the transition from sensitive to resistant subpopulation 

of the bacterial population would change with time.  

Forgetting a dose (omission) and unprecise timing of the dose application are probably the 

most common types of non-adherence in outpatients undergoing an antibiotic therapy with 

dosing intervals of 12 or 24 hours, respectively.  The simulations reveal that in contrast to 

dosage  omission,  errors  in  timing  of  doses  may  have  only  a  negligible  effect  on  the 

antibacterial effect of ciprofloxacin. Of course, the discontinuation of the therapy, classified 
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also as non/adherence, is of different nature. This type of non/adherence is hardly random and 

non-intentional. 

On one hand, the simulations suggest that for regular dosing the 250 mg/12 h regimen is 

superior to 500mg/24 h as it does not permit the concentration curve to decrease below MIC. 

This  is  in agreement  with theoretical  results  of [Sanchez-Navaro et  al.  2002a],  which are 

further  discussed  in  [Sanchez-Navaro  et  al.  2002b].  One  should  keep  in  mind  that  our 

simulations were based on the specific pharmacokinetic and pharmacodynamic parameters of 

ciprofloxacin published in [Meagher et al. 2004] and [Regoes et al. 2004], respectively. Note 

that the pharmacodynamic parameters of the  Emax model (including the MIC of 0.03 µg/ml) 

were estimated for an Escherichia coli strain [Regoes et al. 2004]. On the other hand, it would 

be also interesting to know, whether in the present example the adherence to the once-daily 

administration  might  be  higher  than  to  the  twice-daily  regimen.  [Sanchez-Navarro  et  al. 

2002a]  clearly  mentioned  that  once-daily  regimen  increases  drug compliance.  They were 

aware  of  the  argument  against  the  administration  once  a  day  related  to  the  minimum 

concentration in  plasma,  but  disclaimed it  especially  for older patients.  Furthermore,  they 

claimed that  "according to  pharmacokinetic/pharmacodynamic  criteria,  Cmin values  are  not 

essential for the efficacy of fluoroquinolones". 

Not all drugs have the same relationship between dose and concentration, and concentration 

and effect, respectively. This leads to the concept of forgiveness, which is a capacity to keep 

drug efficacy despite poor compliance. [Boissel and Nony 2002] simulated poor adherence to 

the prescribed dosing schedule and they concluded that while the drugs differ in terms of 

capacity for forgiveness, the physician should be able to select the proper drug taking this fact 

into account. To do so, an access to appropriate indicators of forgiveness has to be available.

Although more sophisticated, stochastic models of non-adherence have been developed and 

fitted  to  known  dosing  histories  [Wong  et  al.  2003],  no  relevant  data  are  available  for 

antibiotic therapy. Furthermore,  omission of a single dose may account for most  adherence 

errors during a therapy over only 10 days, where ‘drug holidays’ (more than one consecutive 

dose is missed), may play a minor role than for long-term therapies. Our aim was to simulate 

the lack of adherence to antibiotic therapy for ciprofloxacin as an example. As for any results 

obtained by simulation, the results are dependent on the underlying models and parameters. 
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