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a b s t r a c t

The Ornstein–Uhlenbeck neuronal model is specified by two types of parameters. One type corresponds
to the properties of the neuronal membrane, whereas the second type (local average rate of the mem-
brane depolarization and its variability) corresponds to the input of the neuron. In this article, we esti-
mate the parameters of the second type from an intracellular record during neuronal firing caused by
stimulation (audio signal). We compare the obtained estimates with those from the spontaneous part
of the record. As predicted from the model construction, the values of the input parameters are larger
for the periods when neuron is stimulated than for the spontaneous ones. Finally, the firing regimen of
the model is checked. It is confirmed that the neuron is in the suprathreshold regimen during the
stimulation.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction techniques to analyze them. We can see from this review that with
Spiking activity is the basic mode of the information transfer
within the nervous system. The sequences of spikes (action poten-
tials) are generated and sent along an axon to other neurons. These
action potentials are considered to be none-or-all events with
shapes irrelevant for the information they convey. Formally, they
are taken in the limit as Dirac delta function and the complete se-
quence of them as a realization of a stochastic point process. The
application of the theory of stochastic point processes in descrip-
tion of spike trains is very common and the phenomenological
models of single neurons predicting properties of these point pro-
cesses are often investigated (Tuckwell, 1988; Gerstner and Kistler,
2002; Dayan and Abbott, 2001). The models are build to generate
interspike intervals (ISIs) and they are often based on the first-pas-
sage-time principle for so called integrate-and-fire models which
mimic accumulation of the incoming signal and the final genera-
tion of the spike is replaced by instantaneous reset of the generator
to the initial level (Brunel and van Rossum, 2007).

Attempts to compare the experimental data with the models is
very common for so called biophysical models of neurons, but con-
sidering the phenomenological models, they are more frequently
compared qualitatively, and the researchers are satisfied if they
perform in a similar way to the real neurons. Burkitt (2006) re-
viewed the integrate-and-fire neuron models and mathematical
ll rights reserved.
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exception of a few theoretical attempts, the comparison of the
models with data has been rather neglected. Only recently the phe-
nomenological models are confronted with experimental data, for
a review see Lansky and Ditlevsen (2008).

Stochastic diffusion integrate-and-fire neuronal model (the
Ornstein–Uhlenbeck process) describes the membrane potential
as a continuous-time stochastic process. Along the introduction
of this model there have been given many arguments why this
treatment of the integrate-and-fire model is appropriate. Leakage
of the neuronal membrane, it means the current which flows
through the membrane due to its passive properties, was one of
the first specification of the integrate-and-fire neuron model. It is
a crucial property of the integrate-and-fire models and thus it is
inherent for practically all the variants of the model. Generaliza-
tions were recently introduced aiming to improve flexibility of
the model and its predictive power (Clopath et al., 2007; Jolivet
et al., 2006).

The model investigated in this paper has parameters of two
types. The first are the parameters which can be measured by indi-
rect electrophysiological methods, deduced from the properties of
other neurons or from measuring the membrane potential fluctua-
tions. If these parameters are known, one can check how well the
model predicts spiking activity under the condition of an input
identical with the input to a real neuron. The second set of param-
eters, investigated in this paper, is identified with the signals
impinging upon the neuron. Knowledge of these parameters can
be used either to deduce unknown signal coming to a neuron or
to check whether we are able to read correctly an artificially deliv-
ered signal.
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To estimate the input signal either the membrane depolariza-
tion or ISIs have to be at our disposal. As mentioned, the previous
attempts to identify the model parameters were based on observa-
tion of ISIs. Such a task is complicated and leads to rather difficult
numerical and mathematical problems (Inoue et al., 1995; Shinom-
oto et al., 1999; Ditlevsen and Lansky, 2005, 2006, 2007; Koyama
and Kass, 2008; Mullowney and Iyengar, 2008). In the study Lansky
et al. (2006) estimation of five basic parameters the Ornstein–
Uhlenbeck model was studied for the membrane depolarization
data. The whole estimation procedure was based on the spontane-
ous-firing part of the intracellular recording. The primary aim of
this study is to extend the results on the stimulation part of the re-
corded signal.
2. Model and its properties

The deterministic leaky integrate-and-fire model (Lapicque
model, RC-circuit) can be derived from the assumptions that the
membrane depolarization is described by a circuit with a genera-
tor, a resistor and a capacitor in parallel. It has to be stressed that
while the electrical representation is related to a small isopotential
patch of neuronal membrane, the voltage in the model reflects an
abstract representation of a complete neuron; usually described as
depolarization at the trigger zone. The trigger zone serves as a ref-
erence point and all the other properties of the neuron are inte-
grated into it.

The Ornstein–Uhlenbeck model of membrane depolarization is
a stochastic variant of the RC-circuit model and can be formally de-
scribed by a stochastic differential equation,

dXðtÞ
dt
¼ �bðXðtÞ � x0Þ þ lþ rnðtÞ; Xð0Þ ¼ x0; ð1Þ

where b reflects the spontaneous decay of the membrane depolar-
ization to the resting level x0;l represents the local average rate
of displacement due to the neuronal input, r reflects the variability
of the membrane potential due to the neuronal input and nðtÞ
stands for Gaussian white noise. The spikes are not an intrinsic part
of model (1) but are generated when the membrane depolarization
XðtÞ reaches the firing threshold S for the first time. So, S is an addi-
tional parameter. After firing, the depolarization is reset to the rest-
ing level, x0, and the process of input ‘‘integration” starts anew. Also
the reset level, x0, represents a parameter of the model. The model is
fully described by five parameters: b;l;r, S and x0, which specify
Eq. (1) together with its initial and boundary condition. More details
on the Ornstein–Uhlenbeck neuronal model can be found, for exam-
ple, in Tuckwell (1988) or Burkitt (2006). The parameters intro-
duced above can be divided in two categories:

� Parameters depending on the membrane properties – b being
the inverse of the membrane time constant, threshold S and
resting level x0.

� Parameters depending on the input signal – l representing the
mean signal and r characterizing its variability. In this study
we identify these parameters. As we focus on the changes in
them brought by the stimulation, we are interested in compar-
ing the values of these two parameters in spontaneous and stim-
ulated parts of the data.

There can be posed serious questions whether b; S and x0 are
independent of the input. Actually, from the experimental data
we directly found that, at least, x0 changes in the presence of stim-
ulation and we further take this fact into account.

The position of the asymptotic mean depolarization
EðXð1ÞÞ ¼ x0 þ l=b, as seen from Eq. (1) determines three basic re-
gimes of firing of the Ornstein–Uhlenbeck model:
� The subthreshold regimen ðl=b� S� x0Þwith Poissonian firing.
As the asymptotic mean depolarization does not reach the
threshold the firing depends on the noise and without it the
neuron would remain silent. It was shown in our previous article
Lansky et al. (2006) that the spontaneous part of the recorded
data fits mostly with subthreshold regimen characterization.

� The threshold regimen ðl=b � S� x0Þ, where the distribution of
ISIs is positively skewed and resembles for example Gamma
distribution.

� The suprathreshold regimen ðl=b� S� x0Þ, where the firing is
almost regular and ISI histogram resembles normal distribution.
The noise plays a limited role in this range of parameters.

As already mentioned in Section 1 two basic types of data can
be used for the identification of the parameters of the Ornstein–
Uhlenbeck model. If only the ISIs are available, the methods appli-
cable in this situation are reviewed in Lansky and Ditlevsen (2008).
In the second situation, which is investigated here, the membrane
depolarization is recorded in between the spike generation. Some
methods for estimation of the parameters under this sampling
were compared for this type of data in Lansky et al. (2006) and
now we apply only the selected ones.
3. Methods

3.1. Data collection

3.1.1. Animal preparation and data preprocessing
Guinea pigs served as subjects for the intracellular recording

experiments. Throughout the recording, an electrocorticograph
was monitored to assess the level of anaesthesia. A midline inci-
sion was made in the scalp and a craniotomy was performed to en-
able vertical access to the MGB in the right hemisphere (He, 2003;
Xiong et al., 2006; Yu et al., 2004). The experimental procedures
were approved by the Animal Subjects Ethics Sub-Committee of
The Hong Kong Polytechnic University. Upon penetrating the
membrane of a cell, the electrode detected the negative membrane
potential. After amplification, the membrane potential as well as
the auditory stimulus were stored in the computer with the aid
of commercial software (AxoScope, Axon). Single neuron data were
selected for this article. The membrane potential was recorded
with time step h ¼ 0:00015 s ¼ 0:15 ms , for period 0–501 s. For
further processing we make basic noise-filtering of the membrane
potential by a moving average over six values, see Lansky et al.
(2006) for details. The acoustic signal used for the stimulation of
neuron has duration of 0.1 s and the series of the acoustic signals
divided the record into the sections of stimulated and spontaneous
parts. We compare the stimulated parts of the record with the
unstimulated ones.
3.1.2. Detection of spikes
We detected and selected 86 stimulated parts in the record,

which were used for the analysis. An example of a data can be seen
in Fig. 1.

A typical neuronal response varies between two and three
spikes during the stimulation. In the spontaneous part, the spikes
appear rarely. As can be seen in Fig. 2 there is a substantial change
of depolarization course after the second spike within the period of
stimulation.

Because of this fact we need to distinguish between the first and
the following ISIs within one stimulation. For this purpose we di-
vide the periods of stimulation according to the number of ISIs in
them. We got three periods of stimulation without any complete
ISI, 68 periods of stimulation containing just one ISI, 14 periods
of stimulation containing two ISIs and one period of stimulation
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Fig. 1. Example of the acoustic signal (shaded curve) and the membrane depolar-
ization (black curve). There are no spikes in the absence of stimulation and three
spikes during the stimulation.
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Fig. 2. An example of membrane depolarization course during the period of
stimulation containing two ISIs.
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Fig. 3. ISI detection. We can see three spikes defining two ISIs within period of
stimulation. The values of the membrane potential from x0 to the end of the valley
are used for the parameters estimation. See text for details.
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containing three ISIs. It is obvious from this distribution, that for
statistical evaluation only the first ISIs (68 + 14 + 1) can be used
(the second and the third ISIs are too rare).

In the spontaneous part we got 312 complete ISIs and because
the spike frequency in this part was substantially lower the shapes
of membrane depolarization were similar and there was no need to
distinguish serial number of ISIs in spontaneous part. Note that the
comparison between stimulated and spontaneous records is based
on ISIs which are completely within these specific periods and thus
the ISIs which are partly in both periods are disregarded (see
Fig. 2).
3.2. Precise detection of ISI

The membrane potential trajectories between spikes take a
shape of valleys in the stimulated parts of the record (see Fig. 2).
Firstly, we formulate a heuristic procedure how to detect these val-
leys in the record. As the estimation of the parameters is based on
the membrane potential trajectory which is entirely outside the
spikes, we have to determine carefully from what time and up to
which time we consider the data. Then, these two time instances
implicitly define the corresponding ISI.

For the detection of spike we fix the voltage level at �35.5 mV
as in the previous study (Lansky et al., 2006). For the beginning
of the valley we pose the valley-detection level at �50 mV. For
the detection of the end of the valley we look for the maximum
of the last point with decreasing depolarization before the next
spike or the last point when the threshold S is crossed before next
spike. Both cases can be seen in Fig. 3.

Threshold S itself is not searched for in periods of stimulation,
as the heuristic method used in the spontaneous part failed. Here
the depolarization often goes from the valley after spike straightly
(almost linearly) towards next spike without crossing any specific
point, which can be clearly marked as the threshold (see Fig. 2).
Model (1) considers the threshold as the membrane property and
thus we take its value S ¼ �61 mV as derived from the spontane-
ous part of the data (Lansky et al., 2006). In the same way, for
the inverse of the membrane time constant we fix b ¼ 25:8 1=s
as it was estimated from the spontaneous activity.

After detecting the valley we can detect the corresponding ISI.
We identify reset potential x0 as the minimal voltage value in the
valley and it is the only intrinsic parameter determined in this pa-
per, see Section 4.2.3. The ISI is defined as interval between the
time when XðtÞ ¼ x0 and the end of the valley. The period from
the spike to the beginning of ISI can be identified as the refractory
period. For a recent review of methods for determination of refrac-
tory period from ISI data, see Hampel and Lansky (2008). Here we
do not investigate this problem, but we complement the picture by
giving the values derived from the depolarization but not the ISIs,
see Section 4.2.4. We should note that the current procedure ap-
plied to the data is slightly different from that used in our previous
paper. In this study the valley has to be defined in a more complex
way as the lengths of ISIs are very short and the shapes of mem-
brane potential are much more variable (see details in Fig. 3).

3.3. Parameters estimation

There are two parameters of model (1) driven by the incoming
signal to the neuron – l and r. In Lansky et al. (2006), the regres-
sion method appeared to be more appropriate than the likelihood
method for estimating the parameter l. To apply the regression
method we minimize the functional

LðlÞ ¼
XN

j¼1

xj � x0 �
l
b
ð1� expð�bjhÞÞ

� �2

ð2Þ

with respect to the parameter l, where h stands for time step and xj

are individual measured values of membrane depolarization for the
total time T ¼ Nh. What is minimized in Eq. (2) is the distance be-
tween observed values of the membrane potential and the mean
depolarization in the absence of the threshold. There are two draw-
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backs of the method. At first, it is the fact, that the predicted values
are those expected in the absence of the threshold. We investigated
this fact deeply in Bibbona et al. (2008) and the effect on the estima-
tion is not substantial. At second, the observed values of the mem-
brane depolarization are not independent realizations of random
variables and it restricts the conclusions made on the basis of the
regression. Nevertheless, in our experience, the method is an
acceptable compromise between the tractability and efficiency.

For estimation of the noise amplitude we use the formula ob-
tained by the maximum likelihood method

cr2 ¼ 1
T

XN�1

j¼0

ðxjþ1 � xj þ xjhb� hl̂Þ2; ð3Þ

and also the formula established by Feigin (1976), which is inde-
pendent of the other parameters estimation:

cr2 0 ¼ 1
T

XN�1

j¼0

ðxjþ1 � xjÞ2: ð4Þ

In this way for each ISI a pair of estimated l̂i; r̂i is computed.
4. Results and discussion

We investigate the effect of stimulation in two directions. At
first, we compare simulations of model (1) based on the estimated
parameters with the experimental record. Secondly, we compare
the stimulated ISIs and their respective l;r parameters to ISIs
and the parameters from the spontaneous part of the record.
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4.1. Model and data comparison

As already stated, we have 83 ISIs which are the first ones and
completely contained in the stimulation periods. For i-th ISI
ði ¼ 1; . . . ;83Þ we have a vector of values of depolarization
xi ¼ ðxi0; xi1; . . . ; xinÞ, where n depends on the length of the ISI. Cor-
responding vector of mean depolarization, yi ¼ ðyi0; yi1; . . . ; yinÞwas
obtained from simulating Eq. (1) using the estimated parameter l̂i

and ri ¼ 0. The differences zi ¼ xi � yi were calculated and their
average and standard deviation evaluated. The results are shown
in Fig. 4. We can see that model based on the estimated parameters
does not show any systematic error in the course of membrane
depolarization.
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Fig. 4. Comparison of experimental data with the model. The central solid curve is
an average of the differences zi , dotted curves indicate �2 � standard deviations .
See text for details.
4.2. Comparison of the parameters

4.2.1. Parameter l
It can be clearly seen in Fig. 5 that the estimates of l have much

broader distribution with median around 1.1 V/s in the stimulated
part than in the spontaneous part, where the distribution is located
around the value of 0.3 V/s. The fact that for stimulated part all the
estimated values of l are higher than in the spontaneous one cor-
responds with the interpretation of l in the Ornstein–Uhlenbeck
model. The lower variability of l in the spontaneous regime corre-
sponds to the fact that their values are lower, see Table 1, but the
relative variability, as reflected by CV, is higher for the spontaneous
data.
4.2.2. Parameter r
In Fig. 6 we can see that the situation for r is analogous to the

case of l. The estimate of the variance r has broader distribution
with median around 0:026 V=

ffiffi
s
p

in the stimulated parts than in
the spontaneous parts, where r has more narrow range with sig-
nificantly higher peak around the value of 0:013 V=

ffiffi
s
p

. The results
are also documented in Table 2, where we can realize that Eq. (3)
gives slightly lower values of estimates than Eq. (4).

In correspondence with Lansky and Sacerdote (2001) there is
higher r for the stimulated ISIs. This is the first experimental con-
firmation of our results originally achieved on entirely theoretical
basis. To get a better picture of the relationship between l and r
different levels of the stimulation would be necessary.
4.2.3. Reset potential x0

It is apparent from the data and illustrated in Fig. 2 that the re-
set value is influenced by the stimulation. This can be interpreted
in such a way, that the accumulation of the incoming signal takes
place during the reset of the membrane potential, resp., during the
refractory period. Obviously, for the second ISI within one stimula-
tion period, there are additional reasons why x0 changes. Thus the
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Fig. 5. Distribution of the estimates of the parameter l: left curves – spontaneous,
right curves – stimulated. Dotted lines are fitted normal distributions f ðlÞ ¼

1
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2s2 ; mstim ¼ 1:158; sstim ¼ 0:304 and mspont ¼ 0:283; sspont ¼ 0:091.

Table 1
Descriptive statistics for the estimates of parameter l.

l̂ ½V=s	 Stimulated Spontaneous

Min 0.6046 0.04665
Max 2.0840 0.92737
Median 1.1061 0.28460
Mean 1.1580 0.28324
CV 0.2645 0.32156
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Fig. 7. Distribution of the reset potential x0: left curve – spontaneous, right curve –
stimulated.

Table 3
Descriptive statistics for parameter x0.

x̂0 ½mV	 Stimulated Spontaneous

Min �74.92 �77.25
Max �67.08 �67.33
Median �70.58 �73.92
Mean �70.52 �73.90
CV �0.024 �0.023

Table 2
Descriptive statistics for the estimates of parameter r.

r̂0 ½V=
ffiffi
s
p
	 Stimulated Spontaneous Stimulated (r̂ from Eq. (3))

Min 0.01843 0.01043 0.01576
Max 0.03686 0.01681 0.03166
Median 0.02646 0.01351 0.02262
Mean 0.02640 0.01348 0.02215
CV 0.12218 0.08310 0.12566
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Fig. 8. Distribution of the time from the peak of the spike to the resting potential,
169 (=3 + 2 � 68 + 2 � 14 + 2 � 1 – two first spikes taken, if possible) spikes were
regarded.

Table 4
Descriptive statistics for the time to reach the resting potential.

Time to reach the resting potential [ms]

Min 1.35
Max 3.6
Median 1.8
Mean 1.9
CV 0.21
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last parameter which we determine is x0. We can see in Fig. 7 that
the shapes of the densities of the estimates do not differ and the
range remains around 10 mV for both cases. The median value is
lower in the case of spontaneous record. As mentioned, this can
be explained by the fact, that the input signal contributes to the
membrane potential during the refractory period. See Table 3 for
the descriptive statistics of x0.
4.2.4. Time to reach the resting potential
We also measure how much time it takes for the membrane po-

tential to reach the resting level after the spike. It is not a param-
eter of model (1), but such knowledge could help to judge how
realistic the model is. In particular we take the interval which
starts on the top of the spike and calculate the time till the first lo-
cal minimum in the membrane depolarization after the spike. This
procedure has the advantage that we can take both the first and
the second spikes in stimulated region for statistical evaluation –
as it follows from the previous section, it is not generally possible
to define x0 after the second spike. The density estimation of the
time till x0 is reached is in Fig. 8 and summary statistics in Table 4.

These results practically coincide with the estimation of the
refractory period based on ISIs only, which was estimated around
3 ms (Hampel and Lansky, 2008), taking into account that the
refractory period should be longer than the time to the minimum
depolarization.
4.2.5. Firing regimen
As mentioned in Section 2, the key issue for the behavior of

model (1) is the mutual position between S� x0 and l=b. To check
the threshold regime we compute S� x0 and l̂=b, where for l̂ we
take the vector of estimated values, S, b are medians of the esti-
mates taken from the spontaneous part of the data and x0 from
the corresponding part (spontaneous or stimulated). In Fig. 9 we
see that asymptotic mean depolarization is always higher (median
is 43 mV) than threshold value in the case of stimulated data,
which is in a good agreement with our expectation.
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Table 5
Descriptive statistics for ISIs.

ISIs [ms] Stimulated Spontaneous

Min 3.900 88.5
Max 24.750 5090.4
Median 8.400 584.6
Mean 9.033 871.9
CV 0.345 0.883
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4.3. ISI distribution

Using the methods described above we got 83 first ISIs com-
pletely within the stimulated parts and 312 ISIs in the spontaneous
parts. In Fig. 10 we compare their distributions. The empirical den-
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stimulated. The solid lines are estimated densities of experimentally obtained ISIs (histog
times of model (103 runs).
sity of the spontaneous ISIs suggests that they are generated in
accordance with the exponential distribution (Kolmogorov–Smir-
nov test does not reject the hypothesis of exponentiality at 5% sig-
nificance level), which may imply the Poissonian firing regime. The
shape of the density for the stimulated ISIs suggests gamma distri-
bution (Kolmogorov–Smirnov test does not reject the hypothesis of
gamma distribution at 5% a significance level).

The descriptive statistics of the ISIs are in Table 5. We can see
that there is a clear distinction between the spike frequency for
stimulated part fstim ¼ 110 Hz and for spontaneous part fspon ¼
1:14 Hz, for median the values are fstim ¼ 119 Hz; f spon ¼ 1:71 Hz.
4.3.1. Comparison of experimental and theoretical distribution
To compare experimental ISI distributions with the Ornstein–

Uhlenbeck first-passage-time distribution, we simulated model
(1) with estimated parameters. The results are in Fig. 11.
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The fit of the observed ISIs to the model is perfect for the stim-
ulated activity. It is not the case for the spontaneous activity,
where from the model we obtained distribution which is more nar-
row and shifted in direction of short ISIs. At this moment we are
not able to explain this discrepancy.
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