
Contents lists available at ScienceDirect

Journal of Neuroscience Methods

journal homepage: www.elsevier.com/locate/jneumeth

Simulating human sleep spindle MEG and EEG from ion channel and circuit
level dynamics

B.Q. Rosena,⁎,1, G.P. Krishnanb,1, P. Sandab,c, M. Komarovb, T. Sejnowskia,d, N. Rulkove,
I. Ulbertf,g, L. Erossg,h, J. Madseni, O. Devinskyj, W. Doylej, D. Fabok, S. Casha,b,l,
M. Bazhenova,b,2, E. Halgrena,m,n,2

aNeurosciences Graduate Program, University of California, San Diego, La Jolla, CA, United States
bDepartment of Medicine, University of California, San Diego, La Jolla, CA, United States
c Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic
d The Salk Institute, La Jolla, CA, United States
e BioCiruits Institute, University of California, San Diego, La Jolla, CA, United States
f Institute of Cognitive Neuroscience and Psychology, Hungarian Academy of Science, Budapest, Hungary
g Faculty of Information Technology and Bionics, Peter Pazmany Catholic University, Budapest, Hungary
hDepartment of Functional Neurosurgery, National Institute of Clinical Neurosciences, Budapest, Hungary
i Departments of Neurosurgery, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
j Comprehensive Epilepsy Center, New York University School of Medicine, New York, NY, United States
k Epilepsy Centrum, National Institute of Clinical Neurosciences, Budapest, Hungary
l Departments of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
mDepartment of Radiology, University of California, San Diego, La Jolla, CA, United States
nDepartment of Neurosciences, University of California, San Diego, La Jolla, CA, United States

A R T I C L E I N F O

Keywords:
MEG
EEG
Forward model
Sleep
Spindle
Thalamus
Cortex
Human

A B S T R A C T

Background: Although they form a unitary phenomenon, the relationship between extracranial M/EEG and
transmembrane ion flows is understood only as a general principle rather than as a well-articulated and
quantified causal chain.
Method: We present an integrated multiscale model, consisting of a neural simulation of thalamus and cortex
during stage N2 sleep and a biophysical model projecting cortical current densities to M/EEG fields. Sleep
spindles were generated through the interactions of local and distant network connections and intrinsic currents
within thalamocortical circuits. 32,652 cortical neurons were mapped onto the cortical surface reconstructed
from subjects’ MRI, interconnected based on geodesic distances, and scaled-up to current dipole densities based
on laminar recordings in humans. MRIs were used to generate a quasi-static electromagnetic model enabling
simulated cortical activity to be projected to the M/EEG sensors.
Results: The simulated M/EEG spindles were similar in amplitude and topography to empirical examples in the
same subjects. Simulated spindles with more core-dominant activity were more MEG weighted.
Comparison with existing methods: Previous models lacked either spindle-generating thalamic neural dynamics or
whole head biophysical modeling; the framework presented here is the first to simultaneously capture these
disparate scales.
Conclusions: This multiscale model provides a platform for the principled quantitative integration of existing
information relevant to the generation of sleep spindles, and allows the implications of future findings to be
explored. It provides a proof of principle for a methodological framework allowing large-scale integrative brain
oscillations to be understood in terms of their underlying channels and synapses.
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1. Introduction

Magnetoencephalography (MEG) and electroencephalography
(EEG, together M/EEG), are complementary, non-invasive, in-
stantaneous, and clinically essential, measures of human neural ac-
tivity. M/EEG are measured as global brain activities, but are known to
ultimately arise from channel currents, at a spatial scale ∼8 orders of
magnitude smaller (Cohen, 2017). The causal chain which leads to M/
EEG can be divided into two linked domains: (1) the biophysical pro-
pagation of electromagnetic fields after summating and cancelling
under anatomical constraints; and (2) the neurobiology of large net-
works of active neurons whose ionic currents generate these fields. Here
we present an initial effort to traverse the spatial scales by integrating
simulations of large networks of neurons with biophysical models of
electromagnetic propagation, informed by non-invasive imaging and
invasive recordings in humans, as well as decades of work in animal
models.

Ion movements through ligand- and voltage-gated transmembrane
channels result in current flows which are influenced by the intrinsic
channel properties of each neuron and the activity of the network.
These currents flow through intracellular and extracellular spaces to
form complete circuits, restricted by cellular membranes, and thus
microscopic cellular anatomy (Einevoll et al., 2013). Currents cancel
and summate locally with those of other neurons in the same cortical
column, producing a net current which can be expressed as a multipole
expansion (Nunez and Srinivasan, 2009). At a distance, the dipolar term
predominates, and the local contribution is typically expressed as a
current dipole moment. Before reaching the sensors, current dipole
moments from different columns cancel and summate mesoscopically
with other columns depending on their relative position and orientation
in the highly folded cortical surface, and the covariance and phase
synchrony of their magnitudes over time (Ahlfors et al., 2010a, 2010b;
Irimia et al., 2012; Linden et al., 2011). Ultimately, the signal at each
M/EEG sensor is the result of the complex cancellation and summation
of microscopic synaptic and intrinsic currents from the many thousands
or millions of neurons contributing to any single sensor’s leadfield.

Transmembrane currents are the result of spontaneous or evoked
neural activity, which can be modeled computationally with various
degrees of realism, balancing accuracy at the individual cell level
against the quantity of neurons that comprise the simulated network. In
the current study, we focus on a model for stage 2 of non-rapid eye
movement sleep (N2) which is characterized by spontaneous sleep

spindles. Sleep spindles manifest in normal M/EEG as spontaneous
bursts of 10–16 Hz activity lasting 0.5–2 s and are thought to be im-
portant for memory consolidation (Andrillon et al., 2011; Bonjean
et al., 2011; Contreras et al., 1996; Dehghani et al., 2011a; Diekelmann
and Born, 2010; Sejnowski and Destexhe, 2000). A large number of
studies in animal models have established the key elements in spindle
generation: local circuit interactions between thalamocortical and
thalamic reticular nucleus neurons, reinforcing intrinsic rhythmicity
from successive activation of the hyperpolarization-activated cation
current, Ih (Destexhe et al., 1996a; McCormick and Pape, 1990) and
low-threshold Ca2+ current IT (Huguenard and McCormick, 1992;
Huguenard and Prince, 1992). Secondarily, the corticothalamic pro-
jections play a role in synchronizing and terminating the spindle
(Bonjean et al., 2011; Timofeev et al., 2001).

Although the initial circuitry and cellular properties generating
spindles are thus in the thalamus, the transmembrane currents that
produce the M/EEG are cortical. The thalamocortical projection con-
necting these structures is comprised of a focal projection to layer 4
(termed the ‘core’), and a distributed projection to upper layers (termed
the ‘matrix’) (Jones, 2002, 2001). We found previously that sleep
spindles detected in MEG are more numerous and less synchronous than
EEG spindles (Dehghani et al., 2011a, 2010), and suggested that this
may reflect a relatively greater sensitivity of EEG to the matrix and
MEG to the core projections (Piantoni et al., 2016). Consistent data has
been obtained with laminar recordings showing primary involvement
of middle versus upper layers in different spindles or parts of spindles
(Hagler et al., 2018).

In this report we combine neural and biophysical models to gen-
erate M/EEG sleep spindles. The neural model is based on our previous
computational modeling including the thalamic and cortical local and
distant circuits involved in spindles, including matrix and core
(Bazhenov et al., 2000; Bonjean et al., 2012; Krishnan et al., 2018b,
2016). All relevant thalamic ligand- and voltage-gated currents are
included. The cortical elements are mapped to 20,484 locations on the
∼1mm resolution cortical surface reconstructed from structural MRI.
We have found in previous simulations that this resolution is necessary
in order to accurately model the interactions between simultaneously
active ECDs in producing M/EEG signals (Ahlfors et al., 2010b). In
order to computationally model this large number of elements in cortex
we use discrete-time models of neurons, which capture critical features
of individual cell dynamics and synapses with difference equations
(Rulkov et al., 2004; Rulkov and Bazhenov, 2008).

Fig. 1. Overall structure of experiment. Empirical Measurements are processed to yield Derived Measures which provide validation targets (top), basic anatomical
constraints informing the forward solution (middle), or basic physiological constraints for the fundamental unit of spindle generation (bottom). The Neural Model is
comprised of thalamic cells modelled at high resolution (to capture the channel and local network synaptic processes underlying spindle generation) driving cortical
cells (computationally-efficient map-based neurons), which are embedded in the cortical surface. The Biophysical Model takes the output of the Neural Model and
projects it to the M/EEG sensors to be compared to actual empirical measurements.
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Empirical sleep M/EEG were collected to provide a basis for model
evaluation and simulated neurons were embedded in donor cortical and
cranial substrates produced from structural MRI collected from the
same subjects. Thus, in our framework, it is the neural activity of in-
dividual persons that is modeled, as cortical geometry, since tissues
intervening between brain and sensors, and connections among neurons
are derived from the reconstructed cortical geometry of the subject.
Microscopic cellular currents are scaled to mesoscopic current dipole
moment densities using factors derived from human laminar electrode
data. The extracranial electromagnetic fields generated by these me-
soscopic sources are derived by quasi-static electromagnetic forward
modeling, which accounts for orientation induced summation and
cancelation by utilizing high-resolution cortical and cranial geometry.
The basic validity of the model is tested by comparing the topography
and amplitude of simulated macroscale extracranial M/EEG fields to
those empirically recorded in the subject used to create the structural
model.

The modeling approach employed here, an extension of our earlier
work, allows for the currents of the coupled core and matrix networks
to be isolated (Bonjean et al., 2012; Krishnan et al., 2018b) and then
projected to the extracranial sensors (Gramfort et al., 2010). We find
that simulated spindles have similar amplitudes and topographies to
those recorded empirically, suggesting that the basic construction of the
model is sound. We then apply the model to test the hypothesis that
spindles recorded with MEG vs EEG tend to represent activity in the
thalamocortical core vs matrix systems. Results consistent with that
hypothesis are found. More generally, we demonstrate a proof-of-con-
cept for relating microscale neuronal parameters to macroscale M/EEG
observations.

2. Materials and methods

The overall structure of the study is shown in Fig. 1. Two kinds of
models were constructed: a Neural Model to compute sleep spindle
activity during N2 sleep, based on the known anatomy and physiology
of the thalamus and cortex; and a Biophysical Model to project the
activity to the M/EEG sensors. Empirical Measurements were obtained
and analyzed to produce Derived Measures, used to specify the models
and validate the model: Structural MRI to define the location and or-
ientation of cortical generating dipoles, Laminar recordings to scale the
current dipole moment densities generating spindles, and M/EEG in the
same subjects to permit validation of model predictions of amplitude
and topography.

2.1. Empirical data

2.1.1. Participants
MEG, EEG, and Structural MRI data were recorded for 6 healthy

adults, (2 male, ages 20–35). Data for one additional subject was col-
lected but was excluded from analysis due to poor EEG quality. Written
informed consent approved by the institutional review boards of the
University of California, San Diego or the Partners Healthcare Network,
as appropriate, was obtained for all subjects. A whole-head MEG system
with integrated EEG cap (Elekta Neuromag) was used to collect 204
planar gradiometers and 60 EEG channels. The position of the subjects’
head within the MEG helmet was monitored using head position in-
dicator (HPI) coils (Uutela et al., 2001), updated every 15–20min. Each
subject’s headshape, HPI coil locations, and EEG electrode positions
were digitized (Polhemus isotrak). Structural MR images were acquired
in a separate session.

2.1.2. M/EEG
M/EEG data were acquired during natural sleep at 1 kHz with a

300 Hz low-pass antialiasing filter. Epochs of stage II non-REM sleep
were selected for analysis using standard criteria (Iber et al., 2007).
Channels with poor data quality or gross artifacts were excluded by

visual inspection. The electrocardiogram artifact was removed with
independent component analysis (Delorme and Makeig, 2004).

2.1.3. Structural MRI
High-resolution structural images were acquired with a 1.5 Signa

HDx whole body scanner (General Electric). The acquisition protocol
consisted of a 3-plane localizer, calibration scan, and a high-resolution
T1-weighted MP-RAGE scans (TR=10.728 s, TE=4.872ms,
TI= 1000ms, flip angle= 8 °, FOV=256, 176 sagittal slices, 1 mm
isotropic).

2.1.4. Laminar recordings
As described in greater detail in (Hagler et al., 2018), after ob-

taining fully informed consent according to the Declaration of Helsinki
guidelines as monitored by the local Institutional Review Boards, la-
minar microelectrodes arrays (Ulbert et al., 2001) were implanted into
cortical tissue designated for resection in 5 patients (2 male; 15–42
years old) undergoing surgical treatment for drug resistant epilepsy.
These arrays consisted of twenty-four 0.040mm diameter 90%Pt/10%
Ir contacts with 0.150mm on-center spacing and were inserted along
the surface normal of the cortex. Microelectrode localization within the
cortical lamina was based on surgical procedure and electrode design
and confirmed by histology in two patients. Bipolar referencing of re-
ported laminar potentials yields a depth-resolved measure of potential
gradients within and among cortical layers to be recorded simulta-
neously. After wideband (DC 10 kHz) preamplification (gain 10x,
CMRR 90db, input impedance 1012 ohms), the laminar gradient re-
cordings were antialiased at 0.5 kHz, gain 1000x, digitized at 2 kHz, 16
bit and stored continuously. Notch filters were applied to remove line
noise and data from artifact-containing contacts were replaced by the
weighted average of neighboring channels using an exponential decay
function, λ=0.1 channel spaces, (Hagler et al., 2018). Mild 1d spatial
smoothing was applied with a Gaussian kernel (σ=0.64 channel
spaces), in order to ensure gradual and continuous variation across
laminar channels, thereby suppressing false sources and sinks due to
minor signal fluctuations.

2.2. Derived measures

2.2.1. Calculation of current dipole moment density scale
Periods of N2 sleep were isolated by the prevalence of generalized

slow rhythms and spindles in simultaneously recoded cortical and scalp
electrodes. Within these periods spindles were detected as described in
Hagler et al. (2018). Briefly, after artifact rejection, spindles were
identified as epochs with continuous sustained power in the 10–16 Hz
spindle band (Andrillon et al., 2011). Spindle identification was made
more selective by adding power in adjacent frequency bands as a re-
jection criteria (Mak-Mccully et al., 2017). Putative spindle epochs
were detected independently for each laminar contact and epochs with
durations less than 200ms were rejected. Epochs containing a spindle
in a least one laminar channel were identified and bounded by the
earliest spindle onset and latest spindle offset across all channels,
yielding a single unified set of detected spindle epochs for the entire
array.

The laminar current source density (CSD), in μA/mm3, of sleep
spindles was calculated by estimating the explicit quasi-electrostatic
inverse of the laminar potential gradients (Pettersen et al., 2006). CSD’s
were scaled by their distance from the center of the array to yield
current dipole moments per unit volume, and then trapezoidally in-
tegrated over the length of the column to yield current dipole moment
densities, in μAmm/mm2, or nAm/mm2. Microscopic transmembrane
currents were scaled up to mesoscopic patch current dipole moment
densities, a quantity corresponding to the dipole moment per unit area.
This was accomplished by in two steps: scaling these currents by the
cortical patch area represented by each column, then scaling these
current densities to be consistent with empirical spindle current dipole
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moment densities recorded from human laminar microelectrode data

2.2.2. M/EEG spindle topographies
Empirical and simulated M/EEG time series were band-passed to

between 10 and 16 Hz with an 8th order zero-phase IIR filter. The
spindle-band complex analytic signal was extracted with the Hilbert
transform and its envelope obtained by computing the elementwise
modulus of the phasor time series. Spindles were automatically de-
tected on empirical and simulated EEG standard criterion of sustained
power in the 10–16 Hz spindle band (Andrillon et al., 2011). In short,
the spindle band envelope was smoothed with a 300ms Gaussian kernel
(σ=40ms), and then normalized into units of standard deviation.
Spindle occurrences were assigned to peaks of at least 2 s.d. and their
temporal extent extended from these peaks until the smooth envelope
fell below 1 s.d. For each detected spindle, the mean (unnormalized)
envelope was computed and these data were interpolated over flattened
sensor positions to produce topographic maps of spindle band envelope
in a standardized head space (Oostenveld et al., 2011). Grand average
maps (Fig. 6) were generated by averaging the mean spindle topo-
graphies from all subjects, or simulation runs.

2.2.3. Core/Matrix index
The degree of core or matrix character was quantified for each si-

mulated spindle. First, the 10–16 Hz envelopes were computed for the
neural model derived current dipole moment density time series for
core and matrix layers, using the procedure described for M/EEG
analysis above. An index of core vs. matrix character was defined:
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where T is the duration of the spindle in samples, N is the total number
of cortical current dipole moment densities (20,484), and ⃑s is the
10–16 Hz complex analytic signal. Positive values indicate a stronger
core character and negative values indicate a stronger matrix character.

2.3. Biophysical model

2.3.1. Cortical reconstruction
White-gray matter surfaces were reconstructed from the MR vo-

lumes using FreeSurfer (Fischl, 2012). Surfaces were sampled at three
resolutions as recursively subdivided icosahedra with 642, 10,242, and
163,842 vertices per hemisphere, wherein lower resolution meshes are
nested subsets of higher resolution meshes. These are referred to as
ico3, ico5, and ico7 surfaces, respectively, indicating the number of
subdivisions. Within each hemisphere the geodesic distance between all
pairs of vertices was computed using the Dijkstra approximation
(Balasubramanian et al., 2009) with 13 Steiner nodes.

2.3.2. Forward model (cortical current dipole moment densities to M/EEG)
The forward model, or gain matrix describing the gradiometer and

EEG sensor activity produced by equivalent current dipoles at each ico5
vertex was then computed for each subject’s cortex. In addition to the
white-gray matter surface, four extra-cortical boundary shells were
reconstructed from the segmented (Fischl, 2012) images: gray-matter-
cerebral-spinal fluid (CSF), CSF-inner skull, inner skull-outer skull, and
outer skull-scalp. While the cranial boundaries consisted of triangular
meshes with 5124 vertices, critically, the cortical mesh was sampled at
∼1mm resolution (327,684 vertices) in order to capture the summa-
tion and cancelation of opposed dipoles. The position of these surfaces
relative to the EEG sensors and HPI coils (Uutela et al., 2001) was de-
termined by registering the digitized headshape to the outer-scalp
surface using non-linear optimization (matlab’s fmincon) with manual
corrections. The position of these surfaces relative to the gradiometers
was computed using the known relative positions between and the
surfaces and the HPI coils, and the HPI coils and the gradiometers. The

orientation of each dipole was set to the surface normal of the white-
gray interface. The quasi-static electromagnetic forward solution was
numerically computed using a four shell boundary element model, or
BEM as implemented with the OpenMEEG software suite (Gramfort
et al., 2010; Kybic et al., 2005). Consistent with reported experimental
ranges, conductivities of 0.33, 1.79, 0.022, and 0.33 S/m, were used for
the brain, CSF, skull, and scalp, respectively.

Rows of the resulting gain matrices were multiplied by the ap-
proximate Voronoi area (Meyer et al., 2003) of the cortical patch each
represents to yield a vertex by sensor forward operator describing the
contribution of each cortical patch’s current dipole moment density to
each gradiometer and voltmeter. Current dipole moment densities re-
sulting from core and matrix system pyramidal neurons were computed
independently, summed together, and then multiplied by the forward
operator to yield simulated EEG and MEG gradiometer time series.

Briefly, for the relatively low frequency of biologically relevant
signals, electric and magnetic fields become uncoupled and the quasi-
static approximations of the Maxwell equations can be used (Nunez and
Srinivasan, 2009). Under this regime, the EEG forward model is a nu-
meric solution for voltage, V, given f, the divergence of current density
distribution, Jp, in the Poisson equation:

∇∙ ∇ = = ∇∙Jσ V f( ) p (2)

where σ is the tissue conductivity, in S/m. Because the cranial tissues
are modeled as nested, closed, and piecewise homogenous domains, the
integration reduces down to solving a symmetric linear system (Kybic
et al., 2005). For MEG, solving for the magnetic field B requires both
the current source distribution Jp and the computed electric field V, and
is obtained by evaluating the Biot-Savart law at the boundaries:

∫= ′ − ∇ ′ × − ′
− ′

′B J r r r r
r r

rr
μ
π

σ V d( )
4

( ( ) ( ))
‖ ‖

p0
3 (3)

where r and r ′ are displacements of the current source and magnet-
ometer, respectively, and μ0 is the vacuum permeability constant.
Planar gradiometer leadfields are derived by differentiating virtual
magnetometer, or integration point, leadfields with respect to the
length of the gradiometer. See (Gramfort et al., 2010; Kybic et al.,
2005) for these methods in greater detail.

2.4. Neural model

2.4.1. Neurons
We used a computational model of a thalamocortical network

(Fig. 2A) with three layers in cortex, with each layer comprised of ex-
citatory (PY) neurons and inhibitory (IN) neurons. The thalamus con-
sisted of a network of core (specific) and matrix (non-specific) nuclei,
each consisting of thalamic relay (TC) and reticular (RE) neurons.

Fig. 2. Dipole Magnitude of sleep spindles in humans. The current dipole mo-
ment density was estimated from CSD profiles as described in the text from
laminar micro-electrode array recordings (24 contacts at 150 μm centers, nat-
ural sleep). Gray dots represent the maximum current dipole moment density
for each automatically detected 10–16 Hz spindle. Standard deviations and 95%
confidence intervals are shown in blue and red, respectively.
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Conductance-based neural models were used to simulate thalamic
neurons. A phenomenological model based on difference equation
(map-based model) was used for cortical PY and IN cells. We have
previously demonstrated that such map-based neurons are computa-
tionally efficient and able to reproduce the response characteristics of
conductance-based neurons (Bazhenov et al., 2008; Rulkov et al., 2004;
Rulkov and Bazhenov, 2008). Map-based models use a large discrete
time step compared to the small integration time step used by pure
conductance-based models while still capturing the dynamics of these
models. Map-based models are capable of simulating large-scale net-
work dynamics with emergent oscillatory activity (Rulkov et al., 2004)
including slow oscillations during NREM sleep (Komarov et al., 2017).

The following equation describes the update of the PY neurons in
time:

= ++x f x y βI( , )t α t t syn1

= − + + ++y y μ x μ σ μ β I( 1) *t t t y syn1 (4)

where variable xt represents the membrane potential of a biological
neuron at time t and yt represent slow varying ion channel dynamics.
The parameter μ (= 0.0005) describes the change in the slow variable

(μ less than 1 lead to slow update of y variable). The parameter β scale
the input synaptic currents (Isyn) for x variable, with β =0.133. The
parameter σ (= 0.02) defines the resting potential of the model
neuron. The function fα is given below:
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(5)

where ut is taken as yt + β Isyn from Eq. (1), α (= 3.65) is a control
parameter which was set to obtain tonic spiking like activity for wide
range of input currents.

The inhibitory INs were implemented using only the x variable to
capture the fast spiking nature of inhibitory neurons and is described by
the following equation:

= ++x f x y β I( , )t α t syn1
* (6)

where, y* =-2.90 with the same fα function as Eq. (2) with α =3.8 and
β =0.05.

The thalamic TC and RE cells were modeled as conductance-based
neurons, described by the following equation:

Fig. 3. Network connectivity. (A) Schematic representation of thalamocortical and corticocortical connections. (B) Example of cortical geodesic-based connectivity in
a patch of cortex. Pyramidal and inhibitory cortical neurons exist at purple and cyan locations, respectively. The blue contour shows the fanout (11.7mm) of a core-
projecting thalamic neuron at the virtual position marked in red. The orange contour shows the fanout (45.0 mm) for a matrix-projecting thalamic neuron at the same
virtual location. (C) Schematic representation of currents and synapses included in detailed conductance-based thalamic neurons. Corticocortical connectivity is not
shown. Please see text for details.
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=C dV
dt

g V E I I– ( – )– –m leak leak int syn (7)

where the membrane capacitance, Cm, is equal to 1 μF/cm2, non-spe-
cific (mixed Na+ and Cl−) leakage conductance, gleak, is equal to
0.0142mS/cm2 for TC cells and 0.05mS/cm2 for RE cells, and the re-
versal potential, Eleak, is equal to -70mV for TC cells and −77mV for
RE cells. Iint is the sum of active intrinsic currents, and Isyn is the sum of
synaptic currents. The area of a RE cell and a TC cell was 1.43× 10-
4 cm2 and 2.9× 10-4 cm2, respectively. RE and TC cells included fast
sodium current, INa, a fast potassium current, IK, a low-threshold Ca2+

current IT, and a potassium leak current, IKL = gKL (V - EKL), where EKL
= −95mV. In addition, a hyperpolarization-activated cation current,
Ih, was also included in TC cells. For TC cells, the maximal con-
ductances are gK= 10mS/cm2, gNa= 90mS/cm2, gT= 2.2mS/cm2,
gh= 0.017mS/cm2, gKL= 0.0142mS/cm2. For RE cells, the maximal
conductances are gK= 10mS/cm2, gNa= 100mS/cm2, gT= 2.3mS/
cm2, gleak= 0.005mS/cm2. Fig. 3C shows a schematic illustration of
the currents and synapses in our conductance-based neurons. The ex-
pressions of voltage- and Ca2+- dependent transition rates for all cur-
rents are given in (Bazhenov et al., 2002; Chen et al., 2012).

2.4.2. Synaptic currents
All the inputs to the map-based neurons were described by the

= ⎧
⎨⎩

+ −
− − −+ +g d

γg g d η d spike
γg δ d otherwise
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{ , (1 ) },
{ , 1 (1 )(1 )},t

syn
t

t
syn

syn n n pre

t
syn

n
1 1

(8)

where +gt
syn

1 and +dt 1 are the synaptic conductance and depression vari-
able for time t+ 1, gsyn is the synaptic coupling strength similar to the
maximal conductance. The parameter =γ 0.99 is the decay variable to
capture the first order kinetics of the synaptic transmission, =η 0.00005
is the rate of decay of the depression variable (d). The synaptic currents
that are input to all conductance-based neurons were governed by
equations given in (Timofeev et al., 2000) and reproduced here:

=I g O V E[ ]( – )syn syn syn (9)

where gsyn is the maximal conductance, O[ ] is the fraction of open
channels, and Esyn is the reversal potential. In RE and PY cells, reversal
potential was 0mV for AMPA receptors, and -70mV for GABA-A re-
ceptors. For TC cells, the reversal potential was −80mV for GABA-A
receptors, and −95mV for GABA-B receptors. GABAA, and AMPA sy-
naptic currents were modeled by the first-order activation schemes.
GABA-B receptors were modeled by a higher-order reaction scheme that
considers the activation of K+ channels by G-proteins. The fraction of
open channels O[ ] is calculated according to the kinetic equation:

= − − = + − −d O
dt

α O T β O T AΘ t t t Θ t t[ ] (1 [ ])[ ] [ ], [ ] ( ) ( )o max o (10)

where Θ(x) is the Heaviside function, t0 is the time instant of receptor
activation. The parameters for the neurotransmitter pulse were ampli-
tude A=0.5 and duration tmax= 0.3ms. The rate constants, α and β,
were α=10ms and β=0.25ms for GABA-A synapses and
α=0.94ms and β=0.18ms for AMPA synapses. E was calculated
according to the interactive scheme (Tsodyks and Markram, 1997).

= − − −+
−E E U e1 [1 (1 )]n n SE

t τ
1

Δ / (11)

where Δt is the time interval between nth and (n+1)th spike,
τ=700ms is the time constant of recovery of the synaptic resources
and USE is the fractional decrease of synaptic resources after an action
potential which was varied between 0.07 and 0.15. Spontaneous min-
iature EPSPs and IPSPs were included for the AMPA and GABA-A
connections within cortical neurons. The arrival times of miniature
EPSPs and IPSPs followed the Poisson process (Stevens, 1993), with
time-dependent mean rate

= − +μ log t t T
T

( )0
(12)

where t is current time and t0 was timing of the last presynaptic spike
and T =50ms.

2.4.3. Synaptic conductance
The maximal conductances for various connections were gGABA-

Fig. 4. Example simulated spindle. Single-neuron and population mean membrane voltage traces in cortex (A) and thalamus (B) during a matrix-weighted spindle.
Simultaneous activity is shown for the matrix and core system neurons of the reticular nucleus (RE) and thalamocortical (TC) subpopulations of the thalamus, as well
as the pyramidal (PY) and inhibitory (IN) subpopulations in each of the three cortical layers. (B) Transcortical currents and scaled current dipole moment densities.
Twelve spatially representative columns selected through icosahedral subsampling are shown. (C) Average 10–16 Hz M/EEG topographies for the duration of the
spindle. In panels (A-C) the spindle duration is demarcated with vertical dashed lines. All panels display the same modeled spindle.
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A(RE-TC)= 0.045 μS, gGABA-B(RE-TC)= 0.06 μS, gGABA-A(RE-
RE)= 0.175 μS; core thalamus: gAMPA(TC-PY)= 0.03 μS, gAMPA(TC-
IN)= 0.015 μS; matrix thalamus: gAMPA(TC-PY)= 0.045 μS, gAMPA(TC-
IN)= 0.02 μS; connections within each layer (matrix, core and L6)
pyramidal neurnons: gAMPA(PY-PY)= 2.5 nS, gNMDA(PY-PY)= 0.4 nS;
connection from matrix to core: gAMPA(PY-PY)= 1.5 nS, gNMDA(PY-
PY)= 0.1 nS; connection from matrix to L6 : gAMPA(PY-PY)= 2.0 nS,
gNMDA(PY-PY)= 0.2 nS; connection from core to matrix: gAMPA (PY-
PY)= 1.5 nS, gNMDA(PY-PY)= 0.1 nS; connection from core to L6:
gAMPA(PY-PY)= 2.0 nS, gNMDA(PY-PY)= 0.2 nS; connection from L6 to
matrix: gAMPA(PY-PY)= 2.0 nS, gNMDA(PY-PY)= 0.2 nS; connection
from L6 to core: gAMPA(PY-PY)= 1.5 nS, gNMDA(PY-PY)= 0.1 nS;
connection betwen PY and IN cells for all layers: gAMPA(PY-IN)= 0.05
μS, gNMDA(PY-IN)= 0.4 nS, gGABA-A(IN-PY)= 0.05 μS and connection
from core and L6 cells to thalamic neurons: gAMPA(PY-TC)= 0.025 μS,
gAMPA(PY-RE)= 0.045 μS.

2.4.4. Network connectivity
A schematic of network connectivity is shown in Fig. 2A. For each

subject’s donor cortex, one pyramidal neuron was simulated for each
vertex in the ico5 mesh (10,242 vertices per hemisphere) for each of
layers matrix, core, and L6. The ico3 mesh was populated with in-
hibitory and thalamic neurons at each of 642 vertices per hemisphere.
For all intra-hemispheric synapses, connectively was established by
comparing synapse-specific fan-out radii to the geodesic distance be-
tween vertices on the ico7 cortex (163,842 vertices per hemisphere),
see Fig. 3B. Inter-hemispheric synapses were threaded between homo-
logously located cortical neurons in 85% of cases and the remaining
connections were made between randomly located neurons. The
probability of transmission in interhemispheric synapses was reduced
to 25% and 50% in the core and matrix systems, respectively, in order

to represent sparse collosal connectivity. Fig. 4 shows membrane vol-
tages, transcortical currents, and M/EEG topographies for an example
simulated spindle. Fig. 5B shows simulated current on an inflated cortex
at a single time point for the core and matrix neurons.

3. Results

We designed a thalamocortical network model that combined the
detailed laminar connectivity with the network connectivity of the
whole brain based on MRI reconstructions. Using this approach we
demonstrate the feasibility of connecting the cellular level activity with
the macroscopic activity seen in M/EEG. We used a difference equation
(map-based) model for cortical neurons, which has the computational
efficiency necessary for simulating the cortex at sufficient resolution to
accurately reproduce the cancellation and summation of cortical di-
poles; we used conductance-based neuronal models for the thalamic
network, which has the elements necessary to accurately reproduce the
interaction of voltage-gated channels and recurrent synaptic connec-
tions central to spindle generation.

In a manner similar to our previous studies, (Bazhenov et al., 2000;
Bonjean et al., 2011; Krishnan et al., 2016), the state of the network was
set to be stage 2 sleep state by modifying the intrinsic and synaptic
currents to mimic the level of low acetylcholine, nor-epinephrine and
histamine. In this state, the network spontaneously generated electrical
activity consisting of multiple randomly occurring spindle events in-
volving thalamic and cortical neuronal populations. Spindle oscillations
are driven by thalamic cell bursting as observed by experimental re-
cordings (Steriade et al., 1993). Spindles spontaneously reappeared
every 3–10 s in agreement in prior intracellular data (Contreras et al.,
1996) and computational models (Bazhenov et al., 2000; Bonjean et al.,
2011; Destexhe et al., 1996a,b, 1998). In this computational model, the

Fig. 5. Simulated cortical sources. (A) 10 s of simulated spindling for one subject. (B) matrix and core pyramidal current dipole moment density distributed across the
cortex at a single time point, marked in red. Data are displayed on an inflated right cortex.
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initiation and termination of spindle sequences critically involved cor-
ticothalamic influences (Bonjean et al., 2011; Contreras et al., 1996;
Timofeev et al., 2001). Furthermore, the synchronization of spindles
across cortical and thalamic regions is determined by the strength and
fanout of thalamocortical and corticothalamic connections (Bonjean
et al., 2011; Krishnan et al., 2018b). The model consisted of two tha-
lamocortical systems: core and matrix. The matrix system had broad
thalamocortical and corticothalamic projections which is known to
result in lower spindle density and increased spatial synchrony
(Krishnan et al., 2018b). During spindles, cortical and thalamic neurons
in both the core and matrix system had elevated and synchronized
firing (Fig. 3A) consistent with previous in-vivo experimental record-
ings (Steriade et al., 1993). This computational neural model was fed
into a biophysical model: an electro- and magnetostatic forward model
was applied to large-scale simulations of a thalamocortical network to
simulate EEG and MEG signals.

As described in the Methods (2.2.1), current dipole moment den-
sities were calculated using linear microelectrode array recordings
spanning the cortical surface scale during sleep spindles in stage N2
sleep. The laminar current source density (CSD), in μA/mm3, of sleep
spindles was calculated by estimating the explicit quasi-electrostatic
inverse of the laminar potential gradients (Pettersen et al., 2006), fol-
lowed by appropriate spatial scaling and integration over the cortical
column to yield current dipole moment densities. As shown in Fig. 2, we
found sleep spindle surface current densities have an average maximum
spindle-band envelope on the order of 0.1 nAm/mm2 with considerable
variation. Therefore, the simulated neural currents (in nA) were divided
by the approximate Voronoi area (Meyer et al., 2003) of the cortical
patch each represents, then scaled to approximately match in amplitude
this surface current dipole moment density, yielding corresponding
current dipole moment densities in nAm/mm2.

We found our model was able to simulate essential elements of
empirical M/EEG. Grand average topographies of simulated and ex-
perimental data, shown in Fig. 6, are qualitatively similar to experi-
mental ones. The empirical MEG topography, in particular, is well-re-
produced and shows the characteristic pattern (Dehghani et al., 2011b;
Manshanden et al., 2002) of frontolateral gradiometer activation. The
dynamic range across the scalp is higher in the simulated data, likely
because the empirical data contains widespread non-spindle back-
ground activity, forming the 1/f curve of the power spectrum, and
which was not included in the neural model.

The simulated EEG topography, while matching the frontal position
of the empirical data on the anterior-posterior axis, modestly differs in
its lateral distribution. Whereas the empirical topography character-
istically peaks along the midline, the two dorsal lobes of the simulated
data only partially converge there. This may be due the model’s rela-
tively crude implementation of inter-hemispheric connectivity, which
consisted of low reliability synapses between mostly homologous cor-
tical areas. An alternative possibility is that the ideal dipole model is
incomplete for EEG (see below).

The simultaneously simulated MEG and EEG are also similar in
magnitude of the empirical M/EEG (Fig. 7A) with average spindle to-
pography maxima (mean ± s.d. across all subjects or model runs) of
56.8 ± 12.6 fT/cm and 49.4 ± 13.4 fT/cm, p= 0.93, for simulated
and empirical MEG, respectively, and 8.7 ± 0.8 μV and 10.7 ± 2.0
μV, p=0.96, for simulated and empirical EEG. However, despite their
quantitative similarity, the simulated EEG and MEG spindles show
opposite systematic tends, with simulated MEG spindles being slightly
stronger and EEG spindles being weaker and less varied than empirical
examples. This differential bias may be due insufficiently detailed or
inaccurate cranial tissue conductivities, factors that have a much
greater bearing on EEG than MEG, for whom these tissues are nearly
transparent. Individual differences in skull conductivity (Akalin Acar
and Makeig, 2013), in particular, may explain the increased inter-
subject variability in empirical spindles. Another possibility is that the
biophysical generation of these signals, commonly thought of as

absolutely unified for a given source distribution, are in fact partially
uncoupled, perhaps by the accumulation of static charges or effective
monopoles, here unaccounted for, which would contribute to EEG but
not MEG.

For simulated spindles, the relative contributions of the core and
matrix systems to current dipole moment densities was quantified and,
as shown in Fig. 7B, we found this index to correlate with the ratio of
derived MEG vs. EEG maxima (Pearson’s r= 0.24, p= 0.019). These
data are consistent with the hypothesis that MEG gradiometer record-
ings are more sensitive to core system neurons when compared to EEG
recordings which are biased towards the matrix system. However, other
factors, including individual differences, could also explain these re-
sults, and more focused studies are needed (Table 1).

4. Discussion

In this study, we developed a computationally efficient large-scale
hybrid thalamocortical model which generated sleep spindles in cor-
tical patches. We estimated the magnitude of current dipole density
from empirical measures and then used a biophysical model to project
the output of the model simulation to the EEG and MEG sensors. The
patches were embedded in the reconstructed cortical surface based on
structural MRI data, and sufficiently dense to accurately model the
summation and cancellation that occurs as M/EEG signals propagate
from their cortical generators to the extracranial sensors. The amplitude
and topography of the M/EEG derived from the model were similar to
those found in empirical recordings in healthy subjects, when using
their individual brain and head anatomy to define the projection from
cortex to M/EEG, thereby suggesting that our approach is basically
sound. We then applied our model to test the previous hypothesis
(Bonjean et al., 2011; Dehghani et al., 2010) that EEG activity during
spindles is relatively more sensitive to the matrix thalamocortical
system, while MEG is relatively more sensitive to the core thalamo-
cortical system.

Fig. 6. Grand average 10–16 Hz complex envelope topographies for empirical
and simulated M/EEG during automatically detected EEG spindles. Empirical
data show averages for six subjects, simulated data for six simulation runs using
those subjects’ cortical surfaces, cranial tissue boundaries, and M/EEG sensor
positions. The same MEG and EEG scales are used for both empirical and si-
mulated topographies.
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Thus, using this approach, we demonstrate the viability of an in-
tegrated model for the generation of EEG and MEG, proceeding from
ionic and synaptic activity, through local and distant networks, whose
currents are then passed through a realistic biophysical model to gen-
erate M/EEG fields that correspond to empirical recordings, a founda-
tional problem in neuroimaging. The model presented here simulta-
neously satisfies a considerable ensemble of neural and biophysical
constraints including: dozens of neural properties, low-threshold Ca2+

current dynamics, the location and orientation of the cortical ribbon,
empirically-backed biophysically probable maximum current dipole
moment densities, and observed simultaneous M/EEG topographies and
amplitudes. This multitude of constraints, embedded in each of the
many scales the model traverses, precludes the pitfall of evoking over-
tuned parameters in order to reproduce over-circumscribed behaviors.
Given the ambitious scope of our model and the complexity of the
system that it attempts to emulate, it is unsurprising that its limitations
are numerous, including limited realism of the neural and biophysical
models, limited application to M/EEG phenomena, and limited vali-
dation measures.

Our neural model simulated 65,304 cortical neurons and 5136
thalamic neurons. While the model is thus much larger than previous
efforts of this kind, it is still contains about 250,000 times fewer neu-
rons than the actual human forebrain. Moreover, each simulated
neuron is considerably simpler than a real neuron, especially in the
number of synapses and number of dendritic compartments. In addi-
tion, subcortical areas other than the thalamus are not included in our
model. While the direct contribution of these areas to extracranial M/
EEG is minimal (Cohen et al., 2011), many, e.g. the nucleus basalis and
hippocampus, may play critical roles in the timing, extent, amplitude

and propagation of cortical activity during spindling. Notwithstanding
these limitations, the model is sufficiently complex to generate sleep
spindles using the same voltage-gated currents, within the same local
thalamic and distant thalamo-cortico-thalamic synaptic circuits, as
have been shown (Bonjean et al., 2012; Krishnan et al., 2018b) to
generate sleep spindles in vivo. Furthermore, the model was sufficiently
large to generate cortical patterns with a complexity that appears si-
milar to that recorded in vivo (Frauscher et al., 2015; Mak-McCully
et al., 2015; Piantoni et al., 2016) although this needs to be further
investigated.

At its base, our study used a realistic computational model at the
level of intrinsic and synaptic transmembrane currents to simulate MEG
and EEG. It would be possible to increase the number of modeled
neurons by using a population based neural mass model. Using such a
model, Ritter et al. (2013) have modeled EEG signals from cortical
activity projected to extracranial sensors. While such models could re-
produce the spectrogram of EEG, they do not explicitly resolve activity
at the level of individual neuron’s ionic or synaptic currents. This be-
comes critical when trying to leverage information from extensive in-
tracellular and direct recordings of cortical and thalamic activity, to test
new hypotheses. For example, abnormal spindling is common in schi-
zophrenia (Wamsley et al., 2012) and variants of the gene CACNA1I,
which encodes a T-type low-threshold Ca2+ channel and is expressed in
the reticular nucleus of the thalamus (Manoach et al., 2016), are im-
plicated in schizophrenia risk (Ripke et al., 2014). The framework we
present can be used to simulate the effects of abnormal low-threshold
Ca2+ channels on M/EEG. Costa and colleagues (Costa et al., 2016)
included some of channel details in their neural mass model, but their
biophysical modeling of EEG only considered an anatomically and

Fig. 7. M/EEG sensor 10–16 Hz envelope maxima during EEG spindles. (A) For simulated and empirical M/EEG, 10–16 Hz envelopes are averaged across the
duration of the spindles then averaged across spindles. The envelope magnitudes of strongest sensors are shown. Each marker represents the average value for one
subject. (B) Simulated individual spindle sensor maxima vs. neural model derived core/matrix index. Positive index values indicate a more core-weighted spindle
while negative values indicate a more matrix-weighted spindle. Each marker represents an individual simulated spindle with symbols signifying the simulation run,
each using a different donor subjects’ cortical surfaces, cranial tissue boundaries, and M/EEG sensor positions.

Table 1
Method advantages and limitations.

Advantages Limitations

Quantitatively relates neural and extracranial measures Lacks detailed modeling of the columnar microstructure
Includes detailed dynamics of thalamic neurons including low-threshold Ca2+ currents Does not account for conduction delays in long distance connections
High resolution biophysical model captures effects of orientation and cancellation in cortical

manifold
Example presented does not include areal diversity, but is possible within model
framework

Can be use to probe intermodal differences and individual-specific anatomy and sensor
configurations

Modeling of interhemispheric connectivity is rudimentary

Produces empirically observed M/EEG amplitudes from biologically plausible current dipole
moment densities

White matter tractography not used to inform connectivity, planned for future
iterations
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physiologically implausible point source.
An important limitation of the neural model presented here is that it

does not take into account functional specialization or cytoarchitec-
tonic differentiation among cortical regions, including hemispheric la-
teralization. The model framework, however, can accommodate these
distinctions. Projects using non-invasive structural, functional and dif-
fusion MR imaging in large healthy populations now provide detailed
cortical parcellations into distinct areas (Glasser et al., 2016). These can
be combined with post-mortem transcriptomes to map receptor and
channel variants, as well as laminar and cellular properties across the
cortical mantle (Burt et al., 2017; Smith et al., 2013; van den Heuvel
and Sporns, 2013). Future work could incorporate these cortical spe-
cializations into the neural model to determine if they underlie the
variations in spindle amplitude and frequency across cortical areas
which have been found with intracranial recordings (Frauscher et al.,
2015; Mak-McCully et al., 2015; Piantoni et al., 2016).

Non-invasive imaging studies in humans and tracer studies in pri-
mates provide estimates of structural and functional connectivity be-
tween cortical areas (Glasser et al., 2016; Markov et al., 2014). The
connections in our model did not incorporate these estimates but relied
on the geodesic distance between cortical locations. While geodesics are
a closer analog to anatomical and functional connectivity than con-
ventional Euclidian distances, they remain a limiting simplification. A
related limitation in our neural model is its lack of a conduction delay.
Such delays are on the order of 10 s of ms between lobes or between the
thalamus and cortex (Klopp et al., 2000; Mak-Mccully et al., 2017), and
thus, together with the strength and pattern of cortico-cortical con-
nections could have a substantial effect on the propagation patterns
(Muller et al., 2016), coherence, or phase relationships within and
among spindles. These large-scale interactions are important for de-
termining whether and how dipoles summate and propagate to the M/
EEG sensors, and need to be addressed in future iterations of the model.

An additional limitation of our neural model is that the current
dipole moment density produced by cortical spindles was based on
empirical measurements, and the model only provided the timing, lo-
cation and relative amplitude of the spindles. Current source density
was calculated from sleep spindles recorded by 24 microcontacts spaced
every 150 μm on center, traversing the cortical thickness from the pia to
white matter (Hagler et al., 2018). The observed amplitude
(∼0.1 nAm/mm2) is consistent with physiologically plausible max-
imum current dipole moment densities (Murakami and Okada, 2015).
An important extension of the model would be to determine if this
empirically determined value is consistent with that calculated in a
detailed model of the columnar microstructure such as LFPy (Lindén
et al., 2014) or the blue brain project (Markram, 2006). This calculation
requires accurate reconstruction of dendritic domains, cell-densities
and distributions, and synaptic terminations, in multi-compartment
Hodgkin-Huxley models (Lindén et al., 2014). Such models are ob-
viously too computationally expensive to incorporate directly into the
many cortical patches in our model. However, an in-depth analysis of a
single patch could help inform how well the limited number of cells we
simulate in each patch represents the large number of actual cortical
cells in that area.

The biophysical model used to propagate the cortical activity to the
extracranial sensors also has limitations. We use a boundary element
model which has been found to provide a good estimate of propagation
at reasonable computational cost (Gramfort et al., 2010). Our model
estimates four tissue-boundary ‘shells’ from each subject’s structural
MRI: pia/CSF; CSF/skull; skull/scalp; and scalp/air. Although other
models commonly omit the CSF layer, simulations indicate that its in-
clusion produces greater smearing of the EEG (Irimia et al., 2012; Lopes
da Silva, 2013). Within the layers we use accepted tissue conductivities
for the brain, CSF, and scalp (Hallez et al., 2007). However, the in vivo
electroconductive properties of the skull remain controversial and may
vary significantly across subjects (Akalin Acar and Makeig, 2013;
Awada et al., 1998; Hallez et al., 2007). Furthermore, cranial nerve

exits and other skull inhomogeneities may have significant effects
(Akalin Acar and Makeig, 2013) which are unaccounted for in our
model. Note that these issues will not affect MEG as, at the precision of
biomedical analyses, the magnetic permeability of these tissues is
equivalent to that of a vacuum (Hämäläinen et al., 1993).

The cortical surface used in the biophysical model is also re-
constructed from each individual subject’s structural MRI (Dale et al.,
1999). Extracranial M/EEG fields generated by a cortical dipole depend
not only on its location and the magnitude of its moment, but are also
highly dependent on the extent of spatial-temporal synchrony with
other dipoles across the cortex and their relative orientations (Ahlfors
et al., 2010a; Lutkenhoner, 2003). Dipoles are created by the post-sy-
naptic currents of aligned pyramidal neurons oriented perpendicular to
cortical surface (Lopes Da Silva, 2004; Nunez and Srinivasan, 2009).
Thus, synchronous dipoles with opposed orientations, such as those on
opposite side of the sulcal walls, will cancel each other out. In fact, the
majority of the total cortical MEG signal is canceled before exiting the
head on account of this phenomena (Ahlfors et al., 2010b; Lutkenhoner,
2003). Although the neural model contains only 20,484 cortical pat-
ches, their activity is mapped to 327,684 vertices for the biophysical
model, which provides ∼1mm resolution. Our previous simulations
indicate that this resolution better captures the summation and cance-
lation of simultaneously active dipoles than lower resolutions (Ahlfors
et al., 2010b). The high-resolution cortical mesh also reduces the nu-
merical integration errors that can be present in BEM forward models
with small inter-shell distances. However the efficacy of even finer re-
solutions at capturing cancelation accurately and the extent of errors in
cortical ribbon orientation reconstruction are unknown, as are their
effects on modeled M/EEG.

Despite these limitations of our neural and biophysical models, they
produced reasonable amplitudes and topographies in both EEG and
MEG. The amplitude of the M/EEG is a powerful constraint reflecting
the interaction of many parameters and we are not aware of a previous
study which reproduces both with realistic parameters and cortical
source topographies. The empirical MEG topography, in particular, is
well-reproduced and shows the characteristic pattern (Dehghani et al.,
2011b; Manshanden et al., 2002) of frontolateral gradiometer activa-
tion. The leadfields of MEG gradiometers are smaller than those of EEG
(Irimia et al., 2012), primarily because EEG is smeared by the skull and
cranial tissues whereas these structures are mostly transparent to MEG
(Hämäläinen and Ilmoniemi, 1994), especially when comparing bipolar
MEG gradiometers to distantly referenced scalp EEG. Consequently,
MEG is relatively more sensitive to focal sources whereas EEG to dis-
tributed (Irimia et al., 2012; Lopes da Silva, 2013). The core and matrix
thalamo-cortical systems correspond to this pattern, with the core
pathway terminating focally in layer 4 and the matrix more diffusely in
superficial layers (Jones, 2002, 2001), leading to the hypothesis that
core spindles would be relatively more prominent in MEG and matrix in
EEG (Dehghani et al., 2010). We modeled the differential projections
and terminations of the core and matrix systems and found support for
this hypothesis.

In addition to the differing spatial extent of core and matrix spin-
dles, their differing laminar distributions may also have an effect on
their respective M/EEG signals. Laminar recordings in humans show
that spindles can be dichotomized depending upon whether their LFP
gradients are maximal in the middle versus superficial cortical layers,
possibly corresponding to the core and matrix terminations of thala-
mocortical fibers (Hagler et al., 2018). The CSD calculated from the
middle layer spindles produced a typical dipolar pattern with a current
source and sink of approximately equal magnitude. However the su-
perficial layer spindles consisted of a concentrated current sink and
distributed or absent sources, yielding an effectively monopolar current
distribution. Apparent monopoles are often found when analyzing CSD
but it is controversial whether these represent an experimental or
analytic artifact or a physiological phenomenon, such as accumulated
charge (Bedard and Destexhe, 2013; Destexhe and Bedard, 2012; Gratiy
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et al., 2013; Riera et al., 2012). Most commonly, spindles are a mixture
of middle and superficial layer waves (Hagler et al., 2018), and we did
not distinguish between them when calculating the current dipole
moment densities, which therefore mainly reflected middle layer
spindles. Static ion concentrations produce an EEG but no MEG signal,
and thus accounting for them in the matrix spindles in our model would
have accentuated the difference between MEG and EEG in the predicted
direction (i.e., producing a better correspondence between model and
empirical results). Furthermore, the EEG signal produced by monopolar
or unbalanced dipole decreases with distance less quickly than that
produced by ideal dipoles, and this would tend to increase the similarity
of the modeled to the empirical EEG spindle topography at midline
sites.

Our model can be easily extended to other M/EEG phenomena such
as K-complexes (Mak-McCully et al., 2014) and slow oscillations
(Komarov et al., 2017; Wei et al., 2016) and resting state activity
(Krishnan et al., 2018a) by marrying their neural computational models
to the biophysical model described here. Using the same neural model
to generate multiple M/EEG phenomena would provide a strong con-
straint on model parameters. Intracranial recordings may inform ad-
ditional constraints, especially for the distribution, synchrony, and
phase of cortical spindles (Halgren et al., 2018). Because the average
spatial distribution of all spindles is much broader than that of in-
dividual spindles, the large-scale folding patterns of the cortex have a
disproportionate impact on average spindle topographies. If simulta-
neous extra- and intra-cranial recordings are obtained, then the extra-
cranial topography of individual spindles can be predicted by informing
the model of the (limited) intracranial measures. This would permit
predictions from individual spindles to be tested, rather than their
grand average as was tested in the current paper.

A more comprehensive understanding of the relationship between
neurobiology, local field potentials, and non-invasive M/EEG might
plausibly improve the diagnostic power of the latter techniques. Here
we have presented a framework that unifies detailed neural models
with the measurement theory of M/EEG. Understanding the forward
model that relates ion channel dynamics to M/EEG is the first step to-
wards developing a principled inverse solution that maps M/EEG re-
sponses to clinically and physiologically relevant human in vivo mole-
cular measures.
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