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Abstract

The dialogue between cortex and hippocampus is known to be crucial for sleep dependent memory consolidation. During
slow wave sleep, memory replay depends on slow oscillation (SO) and spindles in the (neo)cortex and sharp wave-ripples
(SWRs) in the hippocampus. The mechanisms underlying interaction of these rhythms are poorly understood. We examined
the interaction between cortical SO and hippocampal SWRs in a model of the hippocampo-cortico-thalamic network and
compared the results with human intracranial recordings during sleep. We observed that ripple occurrence peaked following
the onset of the Up-state of SO and that cortical input to hippocampus was crucial to maintain this relationship. A small
fraction of ripples occurred during the Down-state and controlled initiation of the next Up-state. We observed that the effect of
ripple depends on its precise timing which supports the idea that ripples occurring at different phases of SO might serve different
functions, particularly in the context of encoding the new and reactivation of the old memories during memory consolidation.
The study revealed complex close-loop interaction of SWRs and SO in which early hippocampal ripples influence transitions
to Up-state, while cortical Up-states control occurrence of the later ripples, which in turn influence transition to Down-state.
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Introduction
Coordination between thalamo-cortical and hippocampal (TH-CX-HC) networks during slow-wave sleep is implicated in the
process of memory consolidation. The theory of two stage memory formation (Squire and Alvarez, 1995) assumes that newly ac-
quired memory traces created during recent experience initially depend on the hippocampal structures but become hippocampus
independent during the following stage of consolidation (McClelland et al., 1995; Frankland and Bontempi, 2005). Hippocampus
may still preserve an index code to link together elements of more complex memories (Teyler and DiScenna, 1986; Nadel et al.,
2007; Winocur et al., 2010). The underlying mechanisms mediating memory consolidation during sleep are not well understood,
but hippocampal sharp-wave ripples (SWRs) coordinated by the cortical slow oscillation (SO) were shown to participate in the
consolidation process (Girardeau et al., 2009; Nakashiba et al., 2009; Ego-Stengel and Wilson, 2010; Wang et al., 2015). Indeed,
a complex nesting of different sleep graphoelements was recently reported in vivo (Staresina et al., 2015; Latchoumane et al.,
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2017). While a phase preference for SWR with respect to ongoing SO was reported in several studies (Sirota et al., 2003; Isomura
et al., 2006; Mölle et al., 2006; Peyrache et al., 2011), SWR complexes can be detected at any SO phase and it remains unclear
if SWRs happening at different phase of the SO cycle are performing different functions (Maingret et al., 2016).

A classic picture of the hippocampo-cortical interaction in memory consolidation suggests that new declarative memories
are first formed in hippocampus and transferred to cortex over the periods of subsequent NREM sleep (Diekelmann and Born,
2010), however, recent studies revealed a more complex bi-directional model of the interaction between hippocampal and cortical
networks (Helfrich et al., 2019; Rothschild et al., 2017). The key component here is cortical input to hippocampus that can
influence its activation and ultimately define the timing and the replay context of the hippocampal activity; resulted hippocampal
input then influences cortical activation. These new data lead to idea that cortical activation during sleep may influence
hippocampal SWRs and therefore define identity of the memories that are replayed (Rothschild, 2019). In this new study,
we ask two related questions: how ongoing SOs affect ripple occurrences and vice-versa how ripples shape the spatiotemporal
pattern of Up and Down cortical states - the alternating activity in the cortical neurons during sleep SO (Steriade et al., 1993b;
Sanchez-Vives and McCormick, 2000).

To study the interaction of SWRs and SO, we bring together biophysical models of the thalamo-cortical network (Bazhenov
et al., 2002; Krishnan et al., 2016; Wei et al., 2018) which reproduces SO-like activity during NREM stage-3 sleep, and hip-
pocampal CA1-CA3 circuitry producing SWR events (Malerba et al., 2016; Malerba and Bazhenov, 2019). Both networks were
connected within a cortico-hippocampal synaptic feedback loop. We observed that the cortical input was driving SO-ripple
coupling. At the same time, ripples influenced the spatiotemporal pattern of the slow waves subtly – depending on the phase of
SO, ripple could either anticipate or postpone transitions between Up and Down-states, as well as change the initiation site and
synchronization properties of the slow waves in the population of cortical neurons. We observed that a cortical site receiving
ripple input at a given cycle of SO, would likely lead the cortical spatiotemporal pattern in subsequent SO cycles. Finally,
we show that the SO-ripple interaction can influence cortical synaptic plasticity, and hence shape sequential spike reactivation
among cortical cells, as reported previously in vivo (Euston et al., 2007; Ji and Wilson, 2007; Peyrache et al., 2009). Our study
supports the notion of bilateral cortico-hippocampal dialogue where both sites reciprocally influence the opponent’s transitions
and in which ripples occurring at different phases of SO engage in functionally different tasks.

Materials and Methods
Hippocampal module
The model is tuned to show appropriate stochasticity in the spontaneous occurrence of sharp-wave ripples and large irregular
activity in the interleaving times. The firing rates of excitatory and inhibitory cells in the system are consistent with experimental
in vivo data, and the CA1-CA3 model activity in isolation from cortical input was studied in terms of the ripple mechanism
(Malerba et al., 2016), the synaptic connections role on reactivation during ripples (Malerba and Bazhenov, 2019) and the
relation between reactivation during sleep and synaptic changes induced by awake learning (Malerba et al., 2018). Technically,
the model closely follows that of (Malerba et al., 2016; Malerba and Bazhenov, 2019) with a slight difference in CA3 connectivity
and projections to CA1, which leads to a single main excitable region in CA3 generating all the sharp waves, rather than
stochastically evolving locations in CA3 which were observed otherwise. Here we briefly describe the basic properties of the
model. CA1 model consisted of 800 excitatory and 160 interneurons, CA3 had 1200 excitatory cells and 240 interneurons. Each
neuron was described by the following equations

Cv̇ = −gL(V − EL) + gL∆ exp
(
v − Vt

∆

)
− w + I(t)

τwẇ = a(v − EL)− w
v(t) = Vthr ⇒ v(t+ dt) = Vr , w(t+ dt) = w(t) + b

I(t) = IDC + Isyn(t) + gNIη

where v is membrane potential and w slow variable. For CA1 pyramidal (Py) cells C = 200 pF, gL = 7 nS, EL = −58 mV,
∆ = 2 mV, Vt = −50 mV, τw = 120 ms, a = 2, Vthr = 0 mV, Vr = −46 mV, b = 100 pA; for CA3 pyramidal cells b = 40 pA; for
both CA1/CA3 inhibitory interneurons (Ins) these parameter change: gL = 10 nS, EL = −70 mV, b = 10 pA, Vr = −58 mV,
τw = 30 ms.

Each cell in the hippocampal model received two separate components of independent input: an OU-process (which by
definition has zero mean, and whose standard deviation value is parameterized in the model) and a constant DC component,
which is randomly selected as an occurrence of a normal distributed (mean and standard deviation parameterized) random
variable. Intuitively, one can think of this cell-independent background noise as representing all the inputs that in vivo cell
would be receiving, and indeed data suggest that an OU-process is a good fit for sub-threshold voltage fluctuations in both
hippocampal and cortical cells. Having a non-zero mean in this noise input (provided by the DC component) allows for a
properly randomized behavior in a population of cells, where some neurons are sitting closer to threshold and others further.
It is of note that all the cells were still kept in a noise-driven spiking regime (as opposed to an oscillatory regime perturbed by
noise), which allows for the stochasticity in sharp-wave initiation and for flexible response to cortical input (the input-dependence
of sharp-waves in the CA3 portion of the model is analyzed in detail in (Malerba et al., 2019)).
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IDC input was a constant different for each cell selected from Gaussian distribution, mean µ (in pA) and standard deviation
p expressed as a percent of the mean value was different for each populations of excitatory (µCA1 = 40, pCA1 = 10%, µCA3 = 22.5,
pCA3 = 30%) and inhibitory (µCA1 = 180, pCA1 = 10%, µCA3 = 130, pCA3 = 30%) cells.

We constructed the background noise by generating two incoming surrogate spike trains (one excitatory and one inhibitory)
and convolving each spike train with an exponential decay, and finally combining the two into a current signal Iη. The two
spike trains were built as memoryless, by finding the time of the next surrogate spike using an exponential random variable
(note that exponential inter-arrival times are markings of memoryless Poisson processes). To numerically obtain the exponential
inter-arrival times of the surrogate spikes, we used a well known conversion from uniform random variables to random variables
of a given distribution (inverse transform sampling). Practically, the next time a surrogate spike is defined as R = t− log(S)/λ,
where λ = 0.5 ms−1 is the rate of incoming spikes, t is the current simulation time, and S is a uniformly sampled random
variable. Next, we defined two surrogate spike trains (with the same high rate), we convolved each of them with a exponential
decay time (τD = 1 ms), shaping two noisy signals with a small standard deviation. Finally, we subtracted the inhibitory signal
from the excitatory signal, and scaled the resulting signal (noisy, with one pole decay after the λ rate, and with small standard
deviation) by a constant coefficient which was tuned to induce, when the current was added to a mildly hyperpolarized single
cell, a standard deviation in voltage fluctuations of about 2 mV. Technically, this was obtained by scaling the noise added to
excitatory cells by gN = 110.08, and to inhibitory cells by gN = 92.88.

The synaptic current from excitatory (SAMPA) and inhibitory(SGABA) synapses to neuron n was defined as:

Isyn(t) = −
∑

j∈SGABA

(
gj→nsj→n(t) ∗ (vn − EGABA)

)
+

∑
j∈SGABA

(
gj→nsj→n(t) ∗ (vn − EAMPA)

)
sj→n =

∑
tk

F

(
e
H
(
t−tk
τd

)
− eH

(
t−tk
τd

))
where reversal potentials were EGABA = −80 mV and EAMPA = 0 mV, tk are the spikes times from the presynaptic cell j,
F is a normalization coefficient, set so that every spike in the double exponential within parentheses peaks at one, and H is
the Heaviside function, ensuring that the effect of each presynaptic spike affects the post-synaptic current only after the spike
has happened. Decay and rise constants were τr(Py

AMPA−→ Py) = 0.5, τd(Py
AMPA−→ Py) = 3.5, τr(Py

AMPA−→ In) = 0.9,
τd(Py

AMPA−→ In) = 3.0, τr(In
GABA−→ Py) = 0.3, τd(In

GABA−→ Py) = 3.5, τr(In
GABA−→ In) = 0.3, τd(In

GABA−→ In) = 2.0; CA3
Py → In synapses had distinct constants τr(PyCA3

AMPA−→ InCA3) = 0.5, τd(PyCA3
AMPA−→ InCA3) = 3.0.

Synaptic weights were sampled from Gaussian distributions with variance σ given by percent of the mean µ: N
PyCA3

AMPA−→ PyCA3
(µ =

22, σ = 0.3µ), N
PyCA3

AMPA−→ InCA3
(µ = 50, σ = 0.3µ), N

InCA3
GABA−→ InCA3

(µ = 35, σ = 0.3µ), N
InCA3

GABA−→ PyCA3
(µ = 40, σ = 0.3µ),

N
PyCA3

AMPA−→ PyCA1
(µ = 66, σ = 0.04µ), N

PyCA3
AMPA−→ InCA1

(µ = 275, σ = 0.04µ).
The rationale for the choice of the equations and parameters is in length discussed in (Malerba et al., 2016, 2017; Malerba

and Bazhenov, 2019).

Thalamo-cortical module
Our TH-CX module is similar to previous models (Bazhenov et al., 2002; Krishnan et al., 2016; Wei et al., 2016) aimed at
modeling NREM stage 3 sleep. The firing rate of pyramidal cells during Up-state in the model was relatively high compared
to in vivo data. The main reason to increase firing in the model, as well as in our previous models of SO, was limited number
of connections each pyramidal cell received in the model, which was much lower than in vivo (20 vs thousands). While this is
a limitation of the model, it does not prevent it from being able to show replay during Up-states (see, e.g., (Wei et al., 2020;
González et al., 2019), where we model replay in pure cortical model without hippocampus). Neuromodulatory changes for
different sleep stages and synaptic plasticity (except for short-term) were not employed in this model.

All neurons followed Hodgkin-Huxley kinetics, cortical neurons included dendritic and axo-somatic compartments:

Cm
dVd
dt

= −IK−leakd − I leakd − INad − INapd − IKmd − IKCad − ICad − Isyn

gsc (Vd − Vs) = −INas − IKs − INaps

where the subscripts s and d correspond to axo-somatic and dendritic compartments, Cm = 0.75 µF/cm2, IK−leak is the
potassium leak current, I leakd is Cl− leak currents, INad is fast Na+ currents, INapd is persistent sodium current, IK is fast delayed
rectifier K+ current, IKm is slow voltage-dependent non-inactivating K+ current, IKCa is slow Ca2+ dependent K+ current, ICa
is high-threshold Ca2+ current, and Isyn is the sum of all synaptic currents to the neuron. The intrinsic currents had generally
the form Icurrent = gcurrent(V − Ecurrent). Details of individual currents can be found in the previous publications (Bazhenov
et al., 2002; Chen et al., 2012; Wei et al., 2016). The conductances of the leak currents were gK−leak = 0.004 mS/cm2 and
gleak = 0.012 mS/cm2. The maximal conductances for the voltage and ion-gated intrinsic currents were gNapd = 2.1 mS/cm2,
gNad = 0.8 mS/cm2, gCad = 0.012 mS/cm2, gKCad = 0.05 mS/cm2, gKmd = 0.02 mS/cm2, gNas = 3000 mS/cm2, gKs = 200 mS/cm2,
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gNaps = 15 mS/cm2. For inhibitory neurons persistent sodium current was not present (INap = 0) and conductances of the
leak currents were: gK−leak = 0.003 mS/cm2 and gleak = 0.01 mS/cm2. The maximal conductances for the voltage and
ion-gated intrinsic currents were gNad = 0.8 mS/cm2, gCad = 0.012 mS/cm2, gKCad = 0.05 mS/cm2, gKmd = 0.015 mS/cm2,
gNas = 2500 mS/cm2, gKs = 200 mS/cm2.

Thalamic neurons were single-compartmental neurons following the equation:

dV

dt
= IK−leakd − I leak − INa − IK − Ih − ILCa − Isyn

where INa and IK are fast Na+/K+ currents, and Ih is hyperpolarization-activated depolarizing current. For thalamocortical
(TC) neurons leak currents conductances were gK−leak = 0.035 mS/cm2, gleak = 0.01 mS/cm2, and maximal conductances for
other currents were gNa = 90 mS/cm2, gK = 12 mS/cm2, gLCa = 2.5 mS/cm2, gh = 0.016 mS/cm2. For thalamic reticular
(RE) neurons Ih current was not present (Ih = 0), and conductances were gK−leak = 0.006 mS/cm2, gleak = 0.05 mS/cm2,
gNa = 100 mS/cm2, gK = 10 mS/cm2, gLCa = 2.2 mS/cm2.

The synaptic currents for AMPA, NMDA, GABAA, GABAB synapses were described by first order activation schemes in the
form of Isyn = gsyn[O]f(V )(V − Esyn) where gsyn is maximum conductance, [O] is the fraction of open channels, Esyn is the
reversal potential, the details for each synaptic current is described in (Wei et al., 2016).

The maximal conductances were g(Py AMPA−→ Py) = 0.076 µS, g(Py NMDA−→ Py) = 0.003 µS, g(Py AMPA−→ In) = 0.096 µS,
g(Py NMDA−→ In) = 0.008 µS, g(In GABAA−→ Py) = 0.3 µS, g(TC AMPA−→ RE) = 0.032 µS, g(RE GABAA−→ TC) = 0.015 µS,
g(RE GABAB−→ TC) = 0.001 µS, g(RE GABAA−→ RE) = 0.07 µS, g(TC AMPA−→ Py) = 0.04 µS, g(TC AMPA−→ IN) = 0.114 µS,
g(Py AMPA−→ TC) = 0.001 µS, g(Py AMPA−→ RE) = 0.005 µS.

The synapses between hippocampus and cortex were modeled as AMPA synapses as described above with the possibility
of signal transmission delay and maximum conductances were g(PyCA1

AMPA−→ PyCX) = 0.006 µS, g(PyCX
AMPA−→ PyCA3) =

0.142 µS, g(PyCX
AMPA−→ InCA3) = 0.067 µS. (Connectivity will be described in the next section.) The default synaptic delays

were 16 ms (Ferino et al., 1987) for CA1->CX and 30 ms for CX->CA3 connections (functionally mimicking several synaptic
hops needed for the cortical layer 5 signal reaching CA3 in hippocampus), the small delays of CA1->CX connections did not
have strong effect on the results and we set them to 0 ms later in order to have equal sampling distance when the effect of
synaptic delays was explored (see Fig. 10).

Additionally in Py->Py, Py<->In cortical connections miniature EPSP/IPSP (Redman, 1990; Salin and Prince, 1996) were
present, their arrival times were modeled by Poisson processes with time-dependent mean rate µAMPA(t) = (2/(1 + exp(−(t −
t0)/τ))− 1)/250 and µGABAB (t) = log((t− t0 + 50)/50)/400 with t0 is a time of last presynaptic spike, τ(Py AMPA−→ Py) = 20,
τ(Py AMPA−→ In) = 40. The maximal conductances for minis were g(Py AMPA−→ Py) = 0.106 mS, g(Py AMPA−→ In) = 0.016 mS,
g(In GABAA−→ Py) = 0.242 mS.

Network connectivity
The global topology of connections between the different modules can be seen in Fig. 1A, the connectivity between different
neuronal types can be seen in Fig. 1B. Network connectivity of thalamocortical module is similar to the previous studies (Wei
et al., 2018, 2020), it is local in nature, meaning we used dense connectivity in close neighborhood and no connectivity outside a
defined radius. This connectivity has been shown to allow replicating properties of the slow oscillations in vivo (Bazhenov et al.
(2002); Krishnan et al. (2016)). Cortex (CX) consisted of 1200 layer-5 Pys and 240 Ins, thalamus consisted of 240 TC and 240
RE cells. Each neuronal type had local one-dimensional single-layer connectivity determined by the radii of connections (Fig.
1D,E). The radii of cortical and thalamic connections were r(Py AMPA−→ Py) = 10 (meaning each cortical excitatory cell connects
to its closest 20 neighboring neurons), r(Py NMDA−→ Py) = 10, r(Py AMPA−→ In) = 2, r(Py NMDA−→ In) = 1, r(In GABAA−→ Py) = 10,
r(TC AMPA−→ RE) = 6, r(RE GABAA−→ TC) = 6, r(RE GABAB−→ TC) = 6, r(RE GABAA−→ RE) = 5, r(TC AMPA−→ Py) = 50,
r(TC AMPA−→ IN) = 10, r(Py AMPA−→ TC) = 25, r(Py AMPA−→ RE) = 20. TC neuron projections to the cortex had a radius of
50, compare with a radius of 10 between cortical pyramidal neurons, and, therefore, TC->CX projections helped to synchronize
cortical activity. Effectively the contribution of thalamus is visible as more synchronized transitions between Up/Down-states.

Network connectivity of hippocampal module is similar to (Malerba and Bazhenov, 2019), see Fig. 1C. CA3 consisted of 1200
excitatory cells and 240 interneurons and had one-dimensional topology. The probability of connection from CA3 pyramidal cell
with index i to other CA3 pyramids and interneurons was proportional to p = 1− (1− 0.15) ∗ (i/1200), i.e. the subnetwork with
smaller index numbers was more densely connected to increase the probability of SWR initiation in this region. The probability
of connection from CA3 interneurons to CA3 pyramids was uniform, p = 0.7. The connectivity of Schaffer collaterals from CA3
pyramids with index i to CA1 pyramids and interneurons was inversely proportional, i.e. p = 1−(1−0.15)∗((1−i)/1200), so that
more interconnected CA3 regions projects less to CA1 and vice versa. Within CA1 connectivity was all-to-all (including both Py
and In), but synapses which were sampled at zero or less weight were removed from the connectivity, yielding to approximately
50% of CA1 Py-Py connections being removed (details in the next section).
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In order to couple only the subdivision of the cortical network with hippocampus, only a subset of cortical pyramidal cells with
index i ∈ [200; 399] projected to subset of CA3 neurons using radii r(PyCX

AMPA−→ PyCA3) = 10, r(PyCX
AMPA−→ InCA3) = 1.

For the opposite direction flow from hippocampus to cortex, continuous groups (chunks) of 100 CA1 pyramidal neurons were
targeting small continuous chunks of 5 cortical Pys. CA1 chunks were partially overlapping (each subsequential one being shifted
by 20 neurons), cortical chunks were non-overlapping with the gap of 33 neurons. Within the single CA1-CX chunk pair, every
CA1 neuron projected to all neurons of a cortical chunk. The pairing between the chunks was linear and flipped, so that CA1
chunks with small index targeted chunks with high CX index and vice versa. Although based on connectivity, CA1 region
targeted distinct loci of the whole cortical network, effectively most of the ripple input (see the histogram of firing across CA1
cells in Fig. 2, left top) was received by cortical sites opposite to the subregion projecting to CA3, thanks to the flip. Although
far from real anatomical connectivity, this topology was chosen in order to be compatible with the following properties: (a) CA1
projects to frontal part of cortex (mPFC) (Cenquizca and Swanson, 2007), (b) CA1 projections target only subset of cortical
cells (Laroche et al., 1990; Thierry et al., 2000; Dégenètais et al., 2003), (c) global traveling waves tend to start in the frontal
region and travel towards the temporal region (Nir et al., 2011), (d) spiking activity in the temporal lobe is synaptically closer
to the enthorhinal cortex, a main gate to the hippocampal structures (Ranganath and Ritchey, 2012) and is more probable to
directly influence it’s activity. Translated to our model: subdivision of cortical network (’temporal’ part) tends to influence SWR
generation in the preferable region of CA3, which is transmitted to topologically similar region of CA1, which in turn projects
to another part of the cortex (’frontal’ part).

Computational methods
All simulations used fourth-order Runge-Kutta integration method with a time step of 0.02 ms. Custom written parallel C++
code was run on Intel Xeon Phi Cooprocessors; parts requiring exhaustive parameter search were run on linux clusters through
the NSG project (Sivagnanam et al., 2013). For the basic results (Figures 3,4,6) 20 trials were run, each simulating 50 s of SO
activity. Each trial had a different random seed for initial condition of network connectivity (hippocampus) and minis generation.

At the start of the simulations, both the thalamocortical loop and hippocampal networks were allowed to run independently
for a few seconds, to get their stable state before synaptically coupling the two rhythms.

Data processing was done in MATLAB (MathWorks). Down-to-Up transitions (DUt) and Up-to-Down transition (UDt) was
computed separately for each cell based on the membrane voltage, the global transition was defined as the time when most of
the cells go through the transition period (peak of cells transition density). SWR event was detected for the whole CA1 network.
To estimate LFP, the average synaptic current input across all pyramidal cells in CA1 was calculated, and then rescaled by 1 mS
to represent a potential, such that 100 pA of synaptic current produce a 100 µV LFP change. SWR was found when the filtered
LFP (50–350 Hz) exceeded a threshold of 5 standard deviations of the mean computed in one SWR-free second of activity, see
(Malerba et al., 2016) for details.

Human data collection and graphoelement analysis
Patients (N=17, 10 females) with long-standing drug-resistant partial seizures underwent SEEG depth electrode implantation
in order to localize seizure onset and thus direct surgical treatment. Patients were from 16 to 58 years old (mean 29.9), with
globally typical SEEG rhythms in most channels (i.e., absence of diffuse slowing, widespread interictal discharges, highly frequent
seizures, etc.) with no previous excision of brain tissue or other gross pathology. Analyzed HC contacts were not involved in the
initiation of seizures, and in 5 did not evince interictal spikes. Electrode targets and implantation durations were chosen entirely
on clinical grounds (Gonzalez-Martinez et al., 2013). All patients gave fully informed consent for data usage as monitored by
the local Institutional Review Board, in accordance with clinical guidelines and regulations at Cleveland Clinic.

After implantation, electrodes were located by aligning post-implant CT to preoperative structural MRI (Dykstra et al., 2012).
Because SWR are more prominent in anterior HC, and spindle-ripples in posterior HC (Jiang et al., 2019a,b), only anterior HC
leads (N=20, 11 left) were analyzed in this study. Electrode contacts were rejected from analysis if they were involved in the
early stages of the seizure discharge, had frequent interictal activity or abnormal spontaneous local field potentials, leaving 371
transcortical pairs (18.2 per patient) accepted for further analysis.

Continuous recordings from SEEG depth electrodes were made with cable telemetry system (Nihon Kohden) across 1 to 6
nights (mean 3.6) nights. NREM was identified by previously described methods utilizing clustering of first principal components
of delta-to-spindle and delta-to-gamma power ratios across multiple LFP-derived signal vectors (Gervasoni et al., 2004; Jiang
et al., 2017). Total NREM sleep duration varied from 2.2-7.1 hr (mean 4.5).

HC-SWR were identified using previously described methods (Jiang et al., 2020) which required at least three peaks at ˜85Hz
(the ‘ripple’), on the peak of a characteristic sharpwave, and followed by a slower wave of opposite polarity. Characteristic
sharpwave waveforms were established for each channel by hand selection of 100-400 HC-SWR with typical waveforms (as
established in primates and rodents) which were averaged to establish a template. The similarity of each putative HC-SWR
to the template was quantified as their dot product, with a threshold set to reject at least 95% of putative HC-SWR without
visually-observable sharpwaves. HC-SWR were distinguished from epileptiform activity using adaptive thresholding of 1-D
wavelet decomposition and 200 Hz high-passed filtering, set and confirmed with visual inspection of each HC channel. Down-
states (DS) and Up-states (US) were identified by filtering from 0.1 to 4 Hz, selecting consecutive zero crossings of opposite slope
separated by 250 to 3000 ms, and retaining the top 10% of peaks. DS were surface negative and confirmed with a high gamma

5



(70-190 Hz) power decrease exceeding 1 dB within ±250 ms of the negative NC-DS peaks. DUt were identified as the midpoint
between the peaks of a DS-US pair (with US immediately following DS), with the two peaks being at most 3000 ms apart.

Peri-stimulus time histograms were constructed for each hippocampo-neocortical (HC-NC) channel pair, comprising the
occurrence times of DUt during the ±2 s interval surrounding midpoints of HC-SWR (see Fig. 3 for examples). The significance
of peaks and troughs in each histogram was tested by comparing them to distributions derived from histograms constructed
under the null hypothesis of no relationship between the NC-DUt and HC-SWR using the following randomization procedure.
Null-hypothesis histograms (N=1000) were constructed of NC-DUt occurrences relative to a number of random times equal to
the number of HC-SWR. For each 200 ms time bin with 100 ms overlap comprising the 4-second trial duration, the actual counts
are then compared to the distribution under the null hypothesis, followed by FDR correction (Benjamini and Hochberg, 1995)
resulting in α = 0.05 post-FDR correction. Altogether, there were 204 unique HC-NC pairs that showed significant HC-SWR
to DUt relationship. A total of 731,124 DUt-SWR events were used for histogram construction. The latencies of the largest
significant peaks identified in the individual histograms constructed as described above, were used to create summary histograms.
To test if, overall, DUt significantly precedes or follows HC-SWR, two-tailed binomial tests with chance probability of 0.5 were
performed on the number of channel-pairs with peak latencies in the 500 ms before vs the 500 ms after the reference HC-SWR.
We also tested with Kolmogorov-Smirnov tests whether, overall, the distribution of peak DUt latencies significantly related to
HC-SWR differs from chance.

Results
Organization and properties of the network
Sleep slow oscillations are generated in the thalamocortical network (Steriade et al., 1993b; Timofeev et al., 2000; Volgushev
et al., 2006; Mohajerani et al., 2010; Sheroziya and Timofeev, 2014) and significantly interact and coordinate with hippocampal
SWRs (Buzsáki, 2015). Our model is build upon the two major network blocks (see Fig. 1) – an oscillating thalamocortical
(TH-CX) network generating slow (˜0.7 Hz) cortical oscillation (Bazhenov et al., 2002; Krishnan et al., 2016; Wei et al., 2018),
and a hippocampal (HC) network spontaneously generating SWRs with an average oscillation frequency within a ripple ˜155 Hz
(Malerba and Bazhenov, 2019). A single layer of cortical (CX) neurons displays alternating Up and Down states and is further
synchronized by the activity of thalamic TC-RE cells (Lemieux et al., 2014). The connectivity between cortex and hippocampus
in the model resembles the biological circuitry where global Up-states tend to travel from medial prefrontal cortex to the medial
temporal lobe and hippocampus (Nir et al., 2011). The output side of hippocampal processing – CA1/subiculum - then projects
one of its streams back to mPFC via the fornix system (Cenquizca and Swanson, 2007) (apart from major feedback connectivity
back to the entorhinal cortex, which we do not model here). Thus, in our implementation, a restricted region of the cortical
network projects to a subset of CA3 cells in hippocampus and affects the probability of sharp-wave generation there. CA3 region
is consequently connected to the CA1 region which displays ripple events as a consequence of large excitatory events occurring
in CA3. The major part of CA1 output is then fed back to the cortical region different from the location projecting back to CA3.
For specific details and justification of the connectivity, please see Methods. We did not tune the network so that the Up-states
would start at a specific region, however, as we show later, the ‘frontal’ part of the cortex tends to start Up-states as a result of
CA1 output activity targeting this region in the model.
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Figure 1: Model connectivity. A. The model consists of the thalamocortical loop which generates slow oscillation (SO), and the
hippocampal circuit (consisting of CA1 and CA3 regions) which generates sharp wave - ripples (SWRs). The two components are
connected via cortical input to CA3 and hippocampal output from CA1. B. Details of network connectivity. (1) Cortex->CA3:
a small contiguous population of cortical excitatory cells targets a restricted part of CA3 which is highly responsive to incoming
excitation. Both CA3 excitatory (blue dots) and inhibitory (red dots) cells were targeted. (2) CA3->CA1 (Schaffer collaterals):
CA3 pyramidal cells broadly target CA1 excitatory and inhibitory neurons. (3) CA1->Cortex: Each small patch of CA1 cells
projects to a small focal region in Cortex. (4) Cortex<->Thalamus: Cortical pyramidal neurons target both thalamic RE and
TC cells, TC cells project back to both Pys and Ins of cortex. Cells in each region are linearly arrayed, with connectivity between
regions generally being topographically organized, with the sole exception of the CA1-> Cortex where CA1 cells at the top of the
array project to the cortical cells a the bottom, and vice versa. C-E. Intra-area connectivities. Blue circles/arrows are excitatory
cells/connections, the red are inhibitory ones. The shaded area designates the target region of a projecting neuron. Connectivity
of the thalamocortical circuity closely follows (Wei et al., 2018), hippocampal connectivity is similar to the connectivity used in
(Malerba and Bazhenov, 2019).
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Fig. 2 shows the spiking rastergrams and LFPs of all the network components when coupled into a “close-loop” large-scale
network. The most prominent hippocampal features are sharp-wave events internally generated in CA3 and ripples in CA1 (LFP
is filtered for better visibility of ripples). By design, the neurons in the bottom region (i.e. with low index number) of CA3 had
higher strength of lateral connections and thus were more prone to initiate a sharp-wave event (note Fig. 2, top right panel, with
majority of excitatory spikes located in the bottom region during the sharp-wave). Due to the connectivity from CA3 to CA1,
CA3 sharp-waves triggered CA1 ripples in the topologically equivalent (in terms of cell indexes, see Fig. 1B) region of the CA1
(Fig. 2, second right panel). Fig. 2, left top, shows detailed view of a single ripple event and a histogram of probability of CA1
cell to become part of a ripple. In order to avoid a problem that the same region of cortex both receives the majority of ripple
events from CA1 (see histogram in Fig. 2 top left) and targets CA3 network, CA1->CX connections were initially “flipped” (see
Fig. 1B), such that the low CA1 region projected to the upper region of the cortical network and vice versa (we also consider
network model without flipping in later sections).

The cortical network generated a regular slow oscillation pattern (Fig. 2, third right panel) in which pyramidal (Py) cells
and inhibitory interneurons (Ins) alternated between Up and Down-states with an approximate frequency of 0.7 Hz. A single
Up-state is detailed in Fig. 2, left bottom, and shows cortical spiking activity propagating throughout the network.

Figure 2: Close-loop network dynamics. Spiking activity of excitatory pyramidal (black) and local inhibitory (red) neurons, LFP
traces (blue). Left panels: representative ripple event in CA1 (top) and Up-state in cortical network (bottom), correspond to
the violet region on the right. Histogram next to the ripple event plot shows average spike count of CA1 excitatory cells during
ripples. Right panels from top to bottom show 10 seconds of full network activity: spiking rastergrams for CA3, CA1, cortical,
and thalamic (RE and TC cells) networks. Average LFPs from 100 neurons (green areas) are shown below rasterplots. LFP for
CA1 was filtered from 120 to 200 Hz, for CA3 from 90 to 200 Hz, and for both cortical and thalamic cells from 0.5 to 2 Hz.

Coordination of SO-SWR in model and experimental data
To measure coordination between the prime network activities – SO and SWRs – we determined the temporal relationship
between the cortical Down-to-Up transition (DUt) and SWR event times in model simulations and experimental data. Recordings
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were done in 17 long-standing drug-resistant epileptic patients with intracranially implanted electrodes (see details in Methods,
additional intracranial data from humans similar to the presented data were studied in depth in (Jiang et al., 2019a,b)). Electrodes
were recorded in the hippocampus and neocortex (NC) during NREM sleep. An example recording from the sites shown in Fig.
3A is displayed in Fig. 3B. Surface negative deflections in the superior parietal transcortical lead indicate Down-states; their
transition to the following Up-state is marked DUt. Simultaneous HC recordings from the hippocampus show prominent ripples
a short time later (Fig. 3B, lower panel). Examination of 371 such pairs found 204 with significant temporal association between
HC-SWR and NC-DUt. The locations of the NC electrodes are plotted on lateral view of the brain in Fig. 3D, which shows that
cortical DUt across all lobes are significantly associated with hippocampal SWR, with no definite preference between cortical
areas. Clearly there is a wide variation in association strength and relative times of occurrence, as would be expected given
that DUt are not synchronous phenomena across the entire cortex in humans (Mak-McCully et al., 2014). However, when the
peak times of this association for each pair are plotted as a histogram, the DUt are seen to predominantly occur prior to the
SWR (Fig. 3E). Considering only all significant channel-pair DUt occurrence peaks with latencies in the 500 ms before vs the
500 ms after the reference HC-SWR, their mean latency was 42 ms prior to the HC-SWR peak. If a gaussian is fit to the DUt
peak distribution, the mean of the fitted distribution is 33 ms prior to the HC-SWR. This distribution of peak DUt latencies
significantly related to HC-SWR differed from chance Kolmogorov-Smirnov test, p < 0.0002). Critically, the DUt peaks were
significantly before the HC-SWR, using a two-tailed binomial test (p < 0.0483). The timing of the pre-SWR peak of DUt
occurrence observed empirically (Fig. 3E) is comparable to that found in the model (Fig. 3F), where DUt peaked 100 ms before
SWR (significantly different from chance, Kolmogorov-Smirnov test, p < 0.001).
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Figure 3: Experimental data and model prediction. A. Position of hippocampal (B) and parietal (W) electrodes in the
example subject B. Top. Raw LFP trace (transcortical bipolar SEEG derivation) from an example parietal lobe electrode
showing alternating Up/Down-states with the Down to Up transition (DUt) marked. Bottom. Raw LFP trace from depth
electrode (bipolar SEEG) from the anterior hippocampus, showing sharpwave-ripples following DUt at the top panel. C. The
blue waveforms are the template averages for the SWR in the 17 aHC sites. They range in amplitude from 35-300 µV peak-
to-peak and are normalized for display. The red waveform is the grand average. D. Locations of the NC electrodes where DUt
were detected to correlate with HC SWR. Shape codes if there was a significant temporal relationship (circle: significant, +: not
significant); color codes order (red: DUt before SWR; blue: SWR before DUt; green: within 100ms); intensity codes association
strength. Significant associations are evident in all cortical areas sampled. E. The number of NC-HC electrode-pairs with peak
DUt-SWR association latency in each 100ms bin around the time of the SWR is plotted. F. DUt-triggered ripple histogram for
the model. To get a smooth distribution, the transition event in each cell is measured separately. Red vertical line - t = 0 ms.

Global coordination of SO-SWR rhythms is set by cortical drive
Next we investigated the mechanisms driving the relationship between cortical and hippocampal events reported in the previous
section. In Fig. 4A1 we plot the DUt-triggered ripple-count histogram where most of the ripples follow onset of an Up-state. To
find what determines this relationship, we considered two open-loop model configurations – one where only CX targets HC and
no connections are fed back from HC to CX (column B) and another one where only HC targets CX (column C). The network
model with CX targeting HC preserved the phenomenon of DUt preceding the ripple event (Fig. 4B1). In contrast, in the model
where HC targets CX but no feedback projections were implemented, no obvious coordination pattern was observed (Fig. 4C1).
We thus conclude that the global coordination of rhythms is set by the cortical drive to the HC network. Nonetheless, additional
important differences to the closed loop model were found (see discussion of Fig. 4A/B3 and Fig. 5 below), rendering the
influence of hippocampus on cortex more subtle. Removing HC->CX projections simplified the temporal profile of ripple events
that only revealed one peak (compare Fig. 4 B1 and A1). Two sample Kolmogorov-Smirnov test comparing the distributions of
time-lags confirmed that the lags were derived from different distributions, p<0.001, suggesting different behavior of the closed
loop model especially near the time of UDt, presumably caused by CA1 activity. Analysis of the ripple event histogram using
UDt as a reference point found a sharp peak of ripple activity immediately preceding UDt in closed loop model (Fig. 4A2), while
this peak was observed earlier and less visible in the model missing CA1 input (Fig. 4B2, a Kolmogorov-Smirnov test confirmed
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that the lags were derived from different distributions, p<0.001).

Figure 4: Effect of network structure on DUt/UDt-ripple coordination. Left column (A): closed CX-HC loop, middle column
(B): open loop (HC does not project back to CX), right column (C): open loop (CX does not project back to HC). 1: DUt
triggered ripple count. 2: UDt triggered ripple count. 3: Spatiotemporal profile of ripple triggered DUt (red) and UDt (blue)
count for all Py neurons in the CX. Colormap: DUt-UDt count (red indicates mainly DUt events, blue – mainly UDt events);
y-axis - index of Py cells. Note the different color-scale used for C3. Corresponding cumulative histograms are shown in SI Fig.
7. Data were averaged across 20 trials.

To further explore the interaction between SWRs and Up/Down-state transitions, we plotted ripple-triggered DUt-UDt count
histograms for all the cortical neurons as a rastergram (Fig. 4A3, B3, C3, the cumulative histograms are shown in SI Fig. 7).
Both Fig. 4 A3, B3 show similar UDt/DUt activity in the bottom region of the network (low indexes). The highly consistent
DUt activity (red dots – high count of DUt events) can be explained by the fact that a DUt transition increases the probability of
the ripple events, and CA3 receives input from CX in this region (see Fig. 1B, left). Therefore, ripples could likely be triggered
by DUt events. Consistent UDt activity (blue dots – high count of UDt events) in the same network region would then follow
because the Up-state duration tends to be consistent across different cycles of SO in this model. What makes Figs. 4 A3, B3
visibly distinct is the pattern of events in the top region (high cell indexes). This pattern was very consistent in the closed-loop
network (Fig. 4A3), where UDt (blue dots) typically followed a ripple in the region receiving most of the CA1 input. This
structure disappeared in the open-loop network (Fig. 4B3) suggesting that hippocampal input to CX is able to synchronize the
UDt events across neurons and across many cycles of SO. In the following section we will discuss the mechanism that may lead
to increased synchrony of UDt in the closed loop network model.
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Diverse effect of ripples on the cortical slow oscillation

To better understand the impact of a ripple event on the dynamics of the cortical slow-wave, we tested a simplified scenario.
The thalamocortical network was simulated in isolation with an input that was identical to a single hippocampal ripple (the
exact spiking of CA1 neurons was saved from simulation of the full TH-CX-HC model) and that was applied at different times
corresponding to different phases of SO. Thus, for each trial, the cortical network was targeted only at one specific phase of SO.
We ran a set of such trials that uniformly spaced a full cycle of SO and we repeated this for many cycles of SO to get the average
response. Fig. 5A shows an example of six trials when stimulation was applied at a different phase to the same cycle of SO (so
as to allow for a direct comparison between trials). Cortical spiking before (after) ripple injection is labeled in black (blue). The
red spikes interposed between blue and black spikes show CA1 spikes representing ripple event. Comprehensive animation of
this experiment is provided in SI Fig. 8. As we performed this experiment for many cycles of SO, several consistently repeating
phenomena could be observed. First, the ripple arriving at the very end of the Up-state was capable of increasing its duration
(compare Fig. 5 A5 vs A1). Second, the ripple arriving approximately in the middle of the Down-state phase was capable of
shortening that Down-state and to cause DUt to start sooner (compare Fig. 5 A3 vs A1). Finally, the ripple arriving in the
middle of the Up-state phase was capable of improving synchronization of the DUt and mildly shortening it (compare Fig. 5 A6
vs A1). We confirmed these observations by quantification across many different trials (Fig. 5 B-D), including (1) an increase
of Up-state duration (the peak in Fig. 5B), (2) a decrease of Down-state duration (the dip in Fig. 5C) and (3) a decrease in the
standard deviation for UDt times across neurons in the region receiving the ripple input (the dip in Fig. 5D).

The dip in the midst of a Down-state (Fig. 5C) suggests that ripples arriving during the middle or later phases of a Down-
state (note that Down-state duration curve is skewed to the right) can increase the probability of a network transition to an
Up-state. This effect was not directly visible in the full closed-loop network analysis (Fig. 4), likely because a sharp increase in
the ripple probability during Up-states tends to hide the relatively small number of ripples that occurred during Down-states.
In other words, since most of the ripples occurred during an Up-state, statistically a single ripple was much more likely to be
followed by a Down-state than an Up-state; note however a small peak in DUt probability ˜200 ms after the ripple in Fig. 3F.
The dip in the midst of Up-state and the peak around UDt in Fig. 5D correspond to the dip/peak in Fig. 5B, suggesting that
the ripple occurring during an Up-state generally promotes a synchronous transition to the Down-state except when precisely
targeted at the very end of a Down-state when it can extend its duration (see animations in SI Fig. 8). The increase in
synchrony of UDt across cortical neurons during this simplified open-loop experiment suggests the possible cause of the network
synchronization observed in the close-loop model. Indeed, the highlighted blue region in Fig. 4 A3 shows synchronized UDt in
the area of the network receiving ripple input (˜#600-1000) following a ripple triggered in the late part of Up-state.

The last observation from the simplified model was further confirmed by running the following experiment. In complete
closed-loop TH-CX-HC simulation, we varied the delay from CA1 to CX pyramidal cells, thus effectively changing the phase of
SO at which cortex tends to receive a ripple. We observed that the pronounced (synchronized) structure of UDt in the top region
of the network (blue dots in Fig. 4A3) appeared mainly for short synaptic delays between CA1 to cortical pyramidal cells (see
SI Fig. 10 second/third column, row 1) but disappeared for longer delays (SI Fig. 10 second/third column, e.g., row 3). It is
worth noting that UDt-triggered ripple-count histogram in the scenario of shorter delays reveals a peak of ripples ahead of UDt
(see Fig. 4A2) suggesting ripple “as a cause of the Down-state”. However, at least in the case of our model, it was mainly the
synchronization of transition times to the Down-state across population of cortical cells rather than transition to the Down-state
itself (which would occur nevertheless just with higher dispersion) what created the sharper peak in the ripple distribution.

The observation that ripples arriving in the midst of a Down-state shortened its duration (“triggered DUt”) from the simplified
model (Fig. 5) was also found in the closed-loop model. When CA1->CX axonal delay became (unrealistically) long so that most
of the ripples tended to arrive at the midst of the Down-state following the Up-state (which helped to initiate the sharp-wave
events), we observed a highly synchronized region of DUt (SI Fig. 10, first column, e.g., 4th row, pronounced DUt blob after
ripple) initiated by the ripple events occurring in the late phase of the Down-state.
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Figure 5: Ripple effect within a single SO cycle, open loop scenario. A. A trace of a single representative ripple event was saved
from the closed loop simulation and delivered to the isolated thalamocortical network at the different phases of the SO oscillatory
cycle. Red dots show spikes of CA1 cells projected to the region of the cortical network. Blue dots are spikes of cortical cells in
the network before ripple stimulation, black dots are cortical spikes after the ripple was delivered. The effect of a ripple on the
spatiotemporal pattern of DUt/UDt transitions depended on the exact timing of the event. We tested 100 independent trials
using identical network (note, cortical spiking patterns before ripple arrival (blue) are identical in all 5 panels ) with the ripple
delivered at different times: Ti = i ∗ 20 ms for i-th trial. Animation for this experiment is shown in SI Fig. 8, effect of SWR
magnitude is shown in SI Fig. 9. B-D. Average effects of a ripple event. Each stimulation condition was repeated 10 times
using different initial seed values hereby creating different cortical dynamics (see animation); the results were averaged. Cortical
activity was analyzed in the region receiving most of the ripple input (top 601-1200 cortical cells). B. Effect of a ripple on the
Up-state duration. Top. Schematic diagram of cortical activity showing two Up-states (shaded) and single Down-state. Duration
of the first Up-state (blue envelope lines) was measured for each trial (i.e. different stimulation phase). Bottom. Average effect
of a ripple on the Up-state length from 10 simulations for each phase condition. X-axis - timing of a ripple rescaled to SO cycle
(reference cycle for each trial was defined by the run where no ripple was delivered). Dashed vertical line shows time of UDt.
C. Effect of a ripple on the Down-state duration. Top. Schematic diagram of cortical activity. Duration of the Down-state
(blue-line envelope) was measured. Bottom. Average effect of a ripple on the Down-state duration. D. Effect of ripple on the
synchrony of the UDt events. Top: Schematic diagram of cortical activity. Timing of the UDt events (blue-line envelope) across
population of cortical neurons was measured. Bottom: Average effect of a ripple on the synchronization of UDt events measured
as a standard deviation of UDt events timing.

Ripples influence Up-state initiation probability
We described above how ripple events targeting cortical neurons during specific phase of the slow oscillation are capable of
influencing the structure and duration of Up and Down-states. To better understand the cumulative effect of the ripples
targeting a specific region of the cortical network, we considered two versions of synaptic wiring differing in the connectivity
pattern between the hippocampus and cortex (Fig. 6 A1, B1). This included the original wiring (Fig. 6A1), in which a majority
of the ripples targets the region of cortex distant from the cortical region projecting to CA3 – mirror mapping, that was contrasted
with non-mirror (i.e. direct) mapping, in which the ripple-active CA1 region projects to roughly the same cortical region that
targets CA3 (Fig. 6 B1). Simulations of both models revealed that the region receiving most of the ripple input tended to
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become a global initiator of the cortical Up-states. It is interesting to note that effect of a single ripple was relatively weak.
This was likely because the network slow wave activity has some refractoriness (Wei et al., 2016), so a single ripple event would
not instantly trigger global slow-wave initiation. Several (3-5) cycles of slow wave activity with ripples targeting the same area
were typically required for this effect to appear. Figures 6 A2/B2 show histogram profiles of the global Up-state initiation (two
sample Kolmogorov-Smirnov test confirmed that they were derived from different distributions, p<0.001). The inset heatmap
in Fig. 6A2 shows that this bias in the initiation preference (yellow region) rapidly decreased as the connectivity strength of
CA1->CX connections (X-axis) decreased. The mean spatial profile of the DUt is displayed as a heatmap in Fig. 6 A3/B3
where for each DUt “wave” a zero time lag indicates that it was the global ignition site (i.e. the first cortical cell which passed
through the DUt transition in a given SO cycle). Since in the mirror mapping model Up-states are more likely to start in the
top region of the cortex (and conversely in the direct-mapping model Up-states tend to start in the bottom region), this defines
a preferred direction of the traveling DUt wave. This observation was further confirmed by measuring an average (over all SO
cycles) gradient of the traveling wave for each local neighborhood of neurons that revealed an opposite traveling wave direction
for the two network topologies (Fig. 6 A3/B3, histograms). This phenomenon was robust with respect to the phase of SO being
hit by the ripple, see SI Fig. 10, 4th column, since varying the time delay of CA1->CX projections did not change the overall
shape of DUt traveling wave.

Preferential direction of the DUt activity propagation could have an impact on synaptic strength via spike-timing dependent
plasticity (STDP). In our network model, each cortical pyramidal neuron was projecting symmetrically on both sides to its
close (within a radius) neighbors. Thus, for each preferred direction of wave traveling, STDP would lead to synaptic connections
decreasing strength in one direction and increasing in the opposite direction. We estimated synaptic changes by calculating STDP
offline from spike traces recorded in the simulation. Figure 6 A4/B4 shows changes to synaptic weights in close vicinity (X-axis)
of each pyramidal neuron (Y-axis) for mirror (left) and direct (right) connectivity models. In the mirror model (Fig. 6A4),
synapses from neurons with higher index to the neurons with lower index (which corresponds to the traveling wave direction)
were generally increased in strength and opposite direction synapses decreased. Thus, comparing Fig. 6 A4 and B4 revealed that
the two wiring scenarios tend to produce symmetrically opposite synaptic changes as consequence of the opposite preferential
directions of the traveling waves.
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Figure 6: Hippocampal ripples shape spatiotemporal pattern of the slow waves. A1, B1. Two wiring models (A1, mirror) and
(B1, direct) reveal different spatiotemporal patterns of the cortical slow waves. A2, B2. Probability of Up-state global initiation
for each neuron in the network. In A1 ripples target the ‘top’ region of the cortex (cells [601-1200]) and this causes higher
Up-state initiation likelihood in that region (A2, blue). In B1 ripples target the ’bottom’ region ([1-600]) and this causes higher
initiation in that region (B2, blue). Average across 20 simulations, dotted lines show standard error of the mean. A2 inset:
Impact of ripples depends on the strength of CA1->CX connections. Color map codes probability of global Up-state initiation
for each neuron in A1 wiring scenario. The preference for the upper region initiation dissolved as CA1->CX connectivity
strength decreased (100% - baseline, 0% - no CA1 input). A3,B3. The pattern of the Up-state initiation probability is reflected
in the shape of the DUt traveling waves. A3/B3, left. Probability of DUt for each neuron as a function of time (lag) with
respect to the time moment of a global DUt (zero lag). A3/B3, right. The difference of the gradient (“slope” in radians) of
the DUt traveling wave in the mirror and direct map models compared to the cortex-only (no hippocampal input) model, each
bar corresponds to restricted region of 100 neurons. Positive values indicate a higher tendency of waves to propagate from the
bottom to the top of the network when compared to the cortex-only model, while the negative values show the opposite tendency.
A4,B4. Change of “incoming” synapses strength (X-axis - relative index of a presynaptic neuron in respect to the index of a
fixed postsynaptic neuron) calculated using offline STDP. The neurons in the middle of the network show an opposite trend for
strengthening/weakening of synapses, corresponding to preferred slope gradients as shown A3/B3. The effect starts weakening
for the distances over 10 neighboring neurons (X-axis) which was due to the increasing time delay.
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Discussion
The hippocampo-cortical dialogue is critical for consolidation of recent memories (Preston and Eichenbaum, 2013). Coordination
between the prominent activities during NREM sleep – cortical slow oscillation and hippocampal ripples – was proposed to be the
primary orchestrating mechanism in this memory consolidation process (Buzsáki, 1996; Maingret et al., 2016). In this new study,
we investigated the reciprocal influence of the slow waves and ripples in the large-scale computational model implementing slow
oscillations in the thalamo-cortical network (Bazhenov et al., 2002; Wei et al., 2018) and SWRs in the CA3-CA1 hippocampal
network (Malerba et al., 2016; Malerba and Bazhenov, 2019). Our study revealed a complex pattern of interaction between the
rhythms. Hippocampal ripples were able to bias cortical network to initiate Down to Up state transitions at specific cortical
network locations as well as to synchronize Up to Down state transitions. Cortical input to hippocampus defined a pattern of
CA3-CA1 activation and ultimately selected which SWRs are replayed. These predictions may help to understand mechanisms
behind the role of hippocampal ripples in defining cortical spike sequences replay (Inostroza and Born, 2013) and the influence
of the cortical activation on the hippocampal SWRs (Rothschild et al., 2017; Helfrich et al., 2019) during sleep related memory
consolidation.

Many specific details of the functional connectivity between (m)PFC and hippocampus are not fully known. Anatomically, the
existence of connections from hippocampus to PFC is well established - CA1/subiculum connections to PFC were independently
described in mice (Parent et al., 2009), rhesus monkey (Goldman-Rakic et al., 1984; Barbas and Blatt, 1995; Averbeck and
Seo, 2008), cats (Irle and Markowitsch, 1982; Cavada et al., 1983) and in greater detail in rats (for review see Cenquizca and
Swanson (2007)), where CA1 makes monosynaptic connections to (m)PFC to both excitatory and inhibitory cells (Gabbott
et al., 2002) with latency in the order of 15-20 ms (Ferino et al., 1987; Laroche et al., 1990; Dégenètais et al., 2003; Tierney
et al., 2004). In line with anatomical findings, recordings during sleep found that CA1-mPFC unit interactions were distributed
widely but not uniformly across the cells and showed about 10 ms latency between CA1 and mPFC followers (Wierzynski et al.,
2009). Furthermore, there is a converging evidence that hippocampo-cortical pathway is plastic and activated during memory
consolidation (Laroche et al., 2000; Binder et al., 2019).

Projections from PFC (anterior cingulate, ACC) back to CA1 were found in mice (Rajasethupathy et al., 2015) but parallel
recordings of ACC and CA1 units during slow-wave sleep suggest a rather multisynaptic pathway (Wang and Ikemoto, 2016). A
weak projection between (o)PFC and CA1 was also described in rhesus monkey (Carmichael and Price, 1995) but its existence
remains questionable (Cavada et al., 2000). Thus, communication from PFC to hippocampus is likely to be mediated through
the main input gate – entorhinal cortex (Lavenex and Amaral, 2000; Preston and Eichenbaum, 2013).

In agreement with these empirical studies, in our model the CA1 region projected widely into the ‘prefrontal’ cortex network,
but the connectivity was not uniform, instead CA1 was parceled into small regions which targeted specific focal points in the
cortical network (see diagram in Fig. 1B). In the opposite direction a small patch of the cortical network projected directly to
CA3. Thus, effectively during slow-wave sleep, cortical input to the hippocampus was activated only when a traveling wave of
Down to Up state transition (Massimini et al., 2004; Luczak et al., 2007; Murphy et al., 2009; Nir et al., 2011) reached that
cortical location.

We focused our study on sleep slow oscillation, defined as quasi-periodic transitions between Up and Down states with
frequencies below 1 Hz (Steriade et al. (1998, 1993b,a)). Recent work (Kim et al., 2019) suggested that cortical slow oscillation
(defined by presence of an Up-state preceding the Down-state) is needed for consolidation of memories, while delta activity
(isolated Down-states) weakens memory reactivation. This finding is consistent with our modeling which suggests a link between
an Up-state and SWRs. Further support for this view is found in (Todorova and Zugaro, 2019) showing that rat prefrontal cells
which fire at the bottom of the Down-state are preferentially tied to the SWRs. Models implementing both slow oscillation and
delta activity are needed to explore specific role of delta in weakening memory consolidation.

We need to note that because of its limited size, the model simulated slow-wave dynamics in a small cortical patch. Thus,
what we refer to in our analysis as a global initiation site of the model can be considered initiation in a ’local’ site from the
perspective of the whole brain dynamics. Indeed, in vivo many Down-states are isolated in distant areas and may propagate
only locally (Mak-McCully et al., 2015). Without explicit modeling of dentate gyrus/rhinal cortices we considered this simplified
model as a functional approximation of the intricate mechanism of how cortical input enters and affects hippocampus in vivo
(Hahn et al., 2007). Other important pathways omitted in the model included the nucleus reuniens (NR) known to play a role
in coordinating slow-wave activity (Hauer et al., 2019), where NR targets both CA1 & mPFC (Hoover and Vertes, 2012; Varela
et al., 2014), and mPFC -> NR -> CA1 pathways (Vertes, 2006; Vertes et al., 2007) possibly gating mPFC->hippocampal flow
which was shown to be important for memory consolidation (Ito et al., 2015).

While our cortical model shows oscillatory dynamics between Up and Down states, recent analysis (Levenstein et al., 2019)
of rodent data suggested that NREM sleep may involve neocortical stable Up regime in which brief inactivating inputs bring the
system to transitory Down state; with increased power in delta band the system moves towards oscillatory regime. Up-states in
our model had rather stereotyped duration 521 ± 141 ms, which was shorter than typical Up-state duration in vivo in humans
(681± 522 ms) and non-anesthetized rodents (˜1 sec) (Levenstein et al., 2019). Within the context of these results, our cortical
model may correspond to the deep sleep or anesthesia states when network oscillatory dynamics is quasi-regular.

Hippocampal SWRs were hypothesized to be a mediator of the hippocampo-cortical dialogue during deep sleep (Buzsáki,
1996) and indeed experimental studies revealed that cortical cells may fire in coordination with hippocampal ripples (Siapas
and Wilson, 1998). Unlike short SWR events (50-100 ms), cortical slow waves (0.2-1 Hz) are characterized by relatively smooth
transitions between Up and Down states, so direct comparison of the timing of the SWR and SO events across the published
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studies is difficult. In many studies SWRs preferably occur during an Up-state (Mölle et al., 2006; Isomura et al., 2006; Nir
et al., 2011), but see also (Battaglia et al., 2004; Hahn et al., 2007). Another common reference points of the SO are transitions
between Up and Down states; it was reported that SWRs commonly follow transition from Down to Up state in the cortical
network (Sirota et al., 2003; Battaglia et al., 2004; Isomura et al., 2006; Mölle et al., 2006). There is also evidence that SWRs
precede cortical Down-state (Peyrache et al., 2009; Maingret et al., 2016; Peyrache et al., 2011).

To study interaction between SO and SWRs, we used the biophysical TH-CX-HC model and observed realistic coupling
behaviour between cortically generated slow oscillation and hippocampally generated ripples. In agreement with (Isomura et al.,
2006), we observed clear biasing of the SWR probability by DUt. SWRs affected both UDt and DUt. Thus, UDt transition
probability increased following the ripple and causal effect of ripples was confirmed by cutting CA1->CX projections in the
open-loop experiment. While only a small fraction of SWRs occurred in the model during cortical Down-states, these events
could still bias location of an UP state initiation site. Open-loop (CA1->CX) simulations, where SWR was artificially triggered
at different pre-defined phases of SO, revealed that effect of SWR fundamentally depends on the phase of SO, namely we observed
that i) UDt events could be both delayed or advanced by SWR; ii) synchronization of UDt events could be both improved or
reduced; iii) DUt events could be only advanced; and iv) in general Up-state initiation could not be directly triggered by a single
SWR event unless it occurred in very close proximity to DUt where local initiation could then be observed. That is in line with
experimental findings (Isomura et al., 2006) where SWR event during the Down-state was sometimes capable to trigger spiking
but the network returned back to the Down-state without transition to the Up-state. Similar observations led Buzsáki (2015)
to suggest that in anesthesia conditions SWRs do not routinely bias the phase of slow oscillation. Our simulations suggest that
while no immediate Up-state typically follows SWR events occurring during Down-state, the duration of the ongoing Down-state
changes and thus the phase of SO may be affected as well. The model prediction that the ripple, occurring in the mid-late phase
of an Up-state, is capable of advancing and synchronizing UDt, may explain data showing visible peak of ripple probability
before Down-state in the UDt-triggered ripple count histogram (Peyrache et al., 2011; Maingret et al., 2016) and may shed light
on the mechanisms behind apparently more synchronized UDt compared to DUt events in vivo (Volgushev et al., 2006; Chen
et al., 2012). The dependence of the SWR effect on the SO phase reported here is also in line with the experimental work of
(Batterink et al., 2016), showing the existence of optimal timing (with respect to SO phase) for the auditory input in targeted
memory reactivation that improves memory consolidation in sleep. Jiang et al. (2019a) suggested that anterior HC SWRs are
more suited, due to their density (0.2 Hz) and timing (Down-state/transition to Up-state), to influence the general context of
neocortical network evolution, while posterior HC ripples (trains phase-locked to local spindles during Up-state) are more suited
to detailed influence on neocortical firing. In agreement with this proposal both Fig. 5C and SI Fig. 9B render Down-state as
a sensitive phase for influencing global SO dynamics by the ripple input and possibly linking it to the setting up the general
context via selecting Up-state initiation points (compare multiple local initiation sites of an Up-state in Fig. 5A1 (no ripple) to
more global initiation by earlier ripple input in Fig. 5A3; also see animation in Fig. 8). The effect of the ripple during Up-state
is globally less visible and suggests that it would be suitable for more nuanced changes in the structure of cortical spatiotemporal
firing.

Analysis of spindles, though an important component of NREM sleep, was omitted as it would substantially go beyond the
scope of this study. Studies show ripple-spindle locking (Sirota et al., 2003; Mölle et al., 2006; Clemens et al., 2007; Wierzynski
et al., 2009); a recent work reported phase-locking between SWR, SO and spindles (Latchoumane et al., 2017) and their
nesting within hippocampus (Staresina et al., 2015). While it is clear that spindle density is an important marker for memory
consolidation processes (Mednick et al., 2013), the exact mechanisms are not clear. A recent proposal suggests SO as the leader
of active memory consolidation while spindles are functionally deafferenting cortical circuitry from SWR input (Genzel et al.,
2014) thus helping (selective) reorganization during Up-state following SWR reactivation-Down-state complex (Maingret et al.,
2016; Jiang et al., 2019b). Jiang et al. (2019a,b) suggests that SWRs are typical for anterior hippocampus, and interact with
widespread cortical areas and waves, but preferentially fronto-central areas and Down-Up states. In contrast, spindle-ripples are
typical for posterior hippocampus and are tightly coupled to spindles in inferior parietal cortex. These empirical studies suggest
that the hippocampal SWRs and spindle-ripples represent distinct phenomena, especially with respect to their interactions with
the cortex, and would need to be modeled separately.

The question about temporal coordination of DUt/UDt and SWRs, as explored in our new work, is directly related to the
hypothesis of the cortical and hippocampal spike sequences replay during sleep, which is believed to be necessary for stabilizing
recent memory traces (Wilson and McNaughton, 1994; Nakashiba et al., 2009; van de Ven et al., 2016; Valero et al., 2017).
Cortical replay occurs during Up-state (Johnson et al., 2010), peaking close to the transition points (Isomura et al., 2006;
Peyrache et al., 2011). Hippocampal replay occurs in CA1 during the ripple events (Kudrimoti et al., 1999), it is known to
be concurrent with cortical replay and both pre-cortical (PFC) (Peyrache et al., 2009) and post-cortical (visual cortex) (Ji and
Wilson, 2007) coupling was observed, leading to the discussion whether the CA1 sequences are driven by SO or SWR drives
replay in PFC (Genzel et al., 2014; Buzsáki, 2015). In (Rothschild et al., 2017) it was shown that there is a bilateral dialogue
between the auditory cortex (AC-CX) and CA1, where AC-CX pre-SWR firing predicted SWR content, which in turn predicted
post-SWR AC-CX activity, thus suggesting a possible scenario in which ripples are first triggered by the cortex and intermediately
influence the cortex back within a single oscillation cycle (Rothschild, 2019). Existence of similar bilateral dialogue was recently
suggested in humans (Helfrich et al., 2019), the loop started by precisely coupled SO-spindle complex, in turn triggering a ripple
event, subsequently followed by increased information flow back to PFC and delayed enough to skip the triggering spindle event.

In this study, we did not attempt to model sequence replay. We observed, however, that repeated ripple events targeting a
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specific cortical region can reshape spatiotemporal patterns of Up-state initiation. This led to consistent change in how Up-state
waves travel across the cortical network. SO firing patterns were found to be supportive for induction of long-term synaptic
plastic changes (Chauvette et al., 2012), so we assessed how spike-time dependent plasticity (Bi and Poo, 2001) during slow-
waves would shape the synaptic connectivity on the cortical site. We found that spatial location/distance to the cortical cells
which are targets of the hippocampal ripples determined whether STDP would render the synapses weakened or strengthened,
thus allowing the mechanisms which selects the ripple content to influence plasticity on the cortical site. Different hippocampal
assemblies representing distinct memory sequences participating in the ripple event(s) could project into various cortical targets
leading to parallel reorganization (consolidation) at the different cortical sites. Observed reorganization by SWR is consistent
with experimental results of (Maingret et al., 2016) in which proper timing of SWR (with respect to cortical Down-state) is able
to reorganize mPFC firing patterns, which would otherwise stay stable (Luczak et al., 2007).
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Dégenètais E, Thierry AM, Glowinski J, Gioanni Y. 2003. Synaptic influence of hippocampus on pyramidal cells of the rat
prefrontal cortex: an in vivo intracellular recording study. Cerebral Cortex. 13:782–792.

Diekelmann S, Born J. 2010. The memory function of sleep. Nature Reviews Neuroscience. 11:114.

Dykstra AR, Chan AM, Quinn BT, Zepeda R, Keller CJ, Cormier J, Madsen JR, Eskandar EN, Cash SS. 2012. Individualized
localization and cortical surface-based registration of intracranial electrodes. Neuroimage. 59:3563–3570.

Ego-Stengel V, Wilson MA. 2010. Disruption of ripple-associated hippocampal activity during rest impairs spatial learning in
the rat. Hippocampus. 20:1–10.

Euston DR, Tatsuno M, McNaughton BL. 2007. Fast-forward playback of recent memory sequences in prefrontal cortex during
sleep. Science. 318:1147–1150.

Ferino F, Thierry A, Glowinski J. 1987. Anatomical and electrophysiological evidence for a direct projection from ammon’s horn
to the medial prefrontal cortex in the rat. Experimental Brain Research. 65:421–426.

Frankland PW, Bontempi B. 2005. The organization of recent and remote memories. Nature Reviews Neuroscience. 6:119–130.

Gabbott P, Headlam A, Busby S. 2002. Morphological evidence that CA1 hippocampal afferents monosynaptically innervate
PV-containing neurons and NADPH-diaphorase reactive cells in the medial prefrontal cortex (areas 25/32) of the rat. Brain
research. 946:314–322.

Genzel L, Kroes MC, Dresler M, Battaglia FP. 2014. Light sleep versus slow wave sleep in memory consolidation: a question of
global versus local processes? Trends in neurosciences. 37:10–19.

Gervasoni D, Lin SC, Ribeiro S, Soares ES, Pantoja J, Nicolelis MA. 2004. Global forebrain dynamics predict rat behavioral
states and their transitions. Journal of Neuroscience. 24:11137–11147.
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Figure 7: Ripple-triggered histograms. Cumulative version of heatmaps in Fig. 4., columns in the same order: left - closed
loop, middle - open loop CX->HC, right - open loop HC->CX. Top, Ripple triggered DUt count (normalized). DUt of each cell
is counted separately. Bottom, Ripple triggered UDt count.

1



Figure 8: Ripple effect on the slow oscillation - animation (download full animation online, this is preview of the first frame). 10
independent simulations of cortical dynamics, different random seed for each network. In each simulation, ripple (schematically
interposed red) targeted cortex sequentially at different phases (100 independent trials) of slow oscillation and affected the
following spiking in cortex (black).
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Figure 9: Effect of ripple magnitude within a single SO oscillatory cycle (open loop scenario, 10 trials for each ripple). Three
ripples of different size were selected (R+ (red, 368 spikes), R0 (black, 227 spikes, reference used in Fig. 5, R- (pink, 149 spikes);
dotted lines ± SEM). The same analysis as for Fig. 5 was performed to evaluate effect of ripple magnitude on the cortical
spatiotemporal dynamics. We found that the main effect was visible on a Down-state (B) - the ripple containing more spikes
was capable to significantly shorten Down-state duration. The ripple magnitude effects on an Up-state duration (A) and on the
synchronization of Up-to-down transition (C) were rather mild.
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Figure 10: Effect of CA1->CX delay. Closed-loop TH-CX-HC model run with artificially varying delay from CA1 excitatory cells
to CX pyramidal cells. Individual rows show subsequent delays of 0, 200, 400, 600, 800, 1000 ms. First column, Spatiotemporal
profile of ripple triggered DUt separately for each pyramidal cell, y-axis indexed from 1-1200 pyramidal cell, x-axis is a lag from
ripple (fixed at t=0), color code shows DUt count (smoothed by gaussian kernel. Average of 10 independent trials, each 50s.
Second column, The same for UDt. Third column, Aligning both DUt and UDt events (“DUt count – UDt count” in color code).
Fourth column, DUt count aligned by global initiation for each DUt traveling wave.


